
Training DNN: from theory to
practice

Gabriel Synnaeve, Alexandre Défossez

March 11th 2022

LSML @ Mines ParisTech

Training DNN, from theory to practice: github.com/adefossez/dnn_theo_practice

1. Non convex stochastic optimization

2.Distributed optimization

3.Adaptive optimization

4.Regularization of DNN

5.Practical DNN training

Outline

2

https://github.com/adefossez/dnn_theo_practice

Non Convexe Stochastic
Optimization
SGD for deep neural networks

Training DNN, from theory to practice: github.com/adefossez/dnn_theo_practice

SGD for non convex optimization

Let for a random variable.

 are the weights of the model.

 is the loss over 1 training example at random.

 is the loss over the entire training set.

F(x) = 𝔼[f(x)] f : ℝd ↦ ℝ

x ∈ ℝd

f

F

4

Notations

https://github.com/adefossez/dnn_theo_practice

Training DNN, from theory to practice: github.com/adefossez/dnn_theo_practice

SGD for non convex optimization

For , we define iteratively for all iteration ,

,

for a step size , and taking i.i.d.

x0 ∈ ℝd n ∈ ℕ

xn+1 = xn − γ∇fn(xn)

γ > 0 fn ∼ f

5

Algorithm

https://github.com/adefossez/dnn_theo_practice

Training DNN, from theory to practice: github.com/adefossez/dnn_theo_practice

SGD for non convex optimization

We make the following assumptions:

1. is lower bounded by

2. is -smooth, i.e. is -Liptchiz

3. The variance of gradient is bounded by

F F*
∀x ∈ ℝd, F(x) ≥ F*

F L ∇F L
∀x, y ∈ ℝd,∥∇F(x) − ∇F(y)∥ ≤ L∥x − y∥

σ2

∀x ∈ ℝd, 𝔼 [∥∇f(x) − ∇F(x)∥2] ≤ σ2

6

Assumptions

https://github.com/adefossez/dnn_theo_practice

Training DNN, from theory to practice: github.com/adefossez/dnn_theo_practice

SGD for non convex optimization

Let a random time uniformly distributed over .

Under the 3 assumptions stated before and if , we have

,

In particular, taking (for N sufficiently large), we get

τ ∼ 𝒰(0,…, N − 1) {0,…, N − 1}

γ < L

𝔼 [∥∇F(xτ)∥2] ≤ 2
F(x0) − F*

γN
+ γLσ2

γ = 1/ N

𝔼 [∥∇F(xτ)∥2] ≤ 2
F(x0) − F*

N
+

Lσ2

N
= O (1

N)
7

Convergence [Ghadimi et Lan, 2013]

https://github.com/adefossez/dnn_theo_practice
https://arxiv.org/pdf/1309.5549.pdf

Training DNN, from theory to practice: github.com/adefossez/dnn_theo_practice

Proof (for the curious)
Using the smoothness of , we have

.

Taking the expectation conditionally on (noted), we get

,

Moving around the term

.

Now we sum over all , and take the full expectation. Note the blue terms telescopes !

.

(We used). Then using the condition on the step size and minor rewrites gives us the result !

F

F(xn+1) ≤ F(xn) − γ∇fn(xn)T ∇F(xn) +
1
2

γ2L∥∇fn(xn)∥2

(f1, …, fn) 𝔼n

𝔼n[F(xn+1)] ≤ F(xn) − γ∇F(xn)T ∇F(xn) +
1
2

γ2L∥∇F(xn)∥2 +
1
2

γ2Lσ2

γ∥∇F(xn)∥2 (1 −
γL
2) ≤ F(xn) − 𝔼n[F(xn+1)]+

1
2

γ2Lσ2

n ∈ {0,…, N − 1}
N−1

∑
n=0

γ𝔼 [∥∇F(xn)∥2] (1 −
γL
2) ≤ F(x0) − F*+

1
2

Nγ2Lσ2

F(xN) ≥ F* γ

8

Smoothness formula:

Defined as integral for with , .

Gradient is Liptchiz

. Replace with expression above,

Inject into formula, and you get the result.

F(y) = F(x) + ∫
y

x
∇F(z)Tdz .

t ∈ [0,1] z = ty + (1 − t)x dz = (y − x)dt

∇F(z) = ∇F(x) + ∫
z

x
∇2F(u)du . ↔ ∇2F ⪯ L

∥∇F(z) − ∇F(x)∥ ≤ L∥z − x∥ z
F(y)

https://github.com/adefossez/dnn_theo_practice

Training DNN, from theory to practice: github.com/adefossez/dnn_theo_practice

SGD for non convex optimization

,

Forgetting of the initial condition vs. asymptotic random walk.

For far from optimum, first term dominates (early training).

Large step size: moves away from faster !

If we initialize to s.t. , optimal step size: .

If , random walk around (as gradient is 0 on average).

𝔼 [∥∇F(xτ)∥2] ≤ 2
F(x0) − F*

γN
+ γLσ2

x0

x0

x* F(x*) = F* γ = 0

γ > 0 x*

9

Regimes

https://github.com/adefossez/dnn_theo_practice

Training DNN, from theory to practice: github.com/adefossez/dnn_theo_practice

SGD for non convex optimization

,

Forgetting of the initial condition vs. asymptotic
random walk.

For DNN training, first regime is most important.

Large constant step size used first.

Theoretically, decrease step size only if training loss
stops improving. In practice, if we use valid loss because
of overfitting.

𝔼 [∥∇F(xτ)∥2] ≤ 2
F(x0) − F*

γN
+ γLσ2

10

Regimes

Each sharp drop is a 10x decrease of the step size.

Bold is validation and thin is training.

Credit: [He et al. 2015].

https://github.com/adefossez/dnn_theo_practice
https://arxiv.org/abs/1512.03385

Distributed optimization

What theory tells us

Training DNN, from theory to practice: github.com/adefossez/dnn_theo_practice

Distributed training for DNN

Instead of sampling single from
training set, sample batch of size :

.

Given W process, each with a gpu,
dispatch over each machine.

Average gradient across machines,
update model and restart.

fn
B

f1,n, f2,n, , …, fB,n,

B/W

12

Synchronous distributed SGD

f1,n f2,n f3,n f3,n f5,n f6,n

∇f1,n(xn) + ∇f2,n(xn) ∇f3,n(xn) + ∇f4,n(xn) ∇f5,n(xn) + ∇f6,n(xn)

GPU 1 GPU 2 GPU 3

gn =
1
6

6

∑
i=1

∇fi,n(xn)

https://github.com/adefossez/dnn_theo_practice

Training DNN, from theory to practice: github.com/adefossez/dnn_theo_practice

Distributed training for DNN

Advantage: simple, same theory as
single GPU.

Disavantage: need to wait on to be
fully computed and averaged before
starting .

Idea: asynchronous updates ? Theory is
complex and in practice doesn’t work
better !

gn

gn+1

13

Synchronous distributed SGD

f1,n f2,n f3,n f3,n f5,n f6,n

∇f1,n(xn) + ∇f2,n(xn) ∇f3,n(xn) + ∇f4,n(xn) ∇f5,n(xn) + ∇f6,n(xn)

GPU 1 GPU 2 GPU 3

gn =
1
6

6

∑
i=1

∇fi,n(xn)

https://github.com/adefossez/dnn_theo_practice

Training DNN, from theory to practice: github.com/adefossez/dnn_theo_practice

Speedup of Synchronous SGD

N is total number of iterations, not samples !

Variance for batch size B is reduced .

We note process time for a batch of size
with workers.

Ideally .

In practice, due to
communication latency.

σ2
B =

σ2

B
TB,W B

W

TWB,W = TB,1

TWB,W ≤ TB,1

14

The impact of mini-batching

𝔼 [∥∇F(xτ)∥2] ≤ 2
F(x0) − F*

γN
+ γLσ2

For batch size B:
𝔼 [∥∇F(xτ)∥2] ≤ 2

F(x0) − F*

γN
+

γLσ2

B

https://github.com/adefossez/dnn_theo_practice

Training DNN, from theory to practice: github.com/adefossez/dnn_theo_practice

Speedup of Synchronous SGD

If workers, taking , we have

. Given total time budget , we can process
more samples, but nb of iterations it still the same.

For large, variance term is , no more gains.

No magic: gain only up to a point, then plateau !

W B̃ = WB

TB̃,W = TB,1 T W

𝔼 [∥∇F(xτ)∥2] ≤ 2
F(x0) − F*

γN
+

γLσ2

BW

W ≈ 0

15

The iteration vs. variance trade-off

https://github.com/adefossez/dnn_theo_practice

Training DNN, from theory to practice: github.com/adefossez/dnn_theo_practice

Extreme speed-up in practice

16

Due to high variance, initial batch size ~ 64.

Up to 4 to 8 GPUs (depends on model complexity)
distribution keeping same batch size requires no
change.

Beyond 8 GPU, use following tricks:

• Increase batch size by factor .

• Increase learning rate by factor or if
diverges.

• Gradual warmup of learning rate.

K

K K

An example of extreme speed up on image net,
and the tricks required.

Credit: [Goyal et al. 2018].

https://github.com/adefossez/dnn_theo_practice
https://arxiv.org/pdf/1706.02677.pdf

Adaptive optimization

A single learning rate to rule them all !

Training DNN, from theory to practice: github.com/adefossez/dnn_theo_practice

The parametrization issue
How to mess up with SGD.

18

Let for a random variable.

Let us take . We define , and .

This is a scalar reparametrization of the original function space.

F(x) = 𝔼[f(x)] f : ℝd ↦ ℝ

λ ∈ ℝ* G(y) = F(λy) g(y) = f(λy)

∇g(y) = λ∇f(λy)

https://github.com/adefossez/dnn_theo_practice

Training DNN, from theory to practice: github.com/adefossez/dnn_theo_practice

The parametrization issue
How to mess up with SGD.

19

, and . We define .

Intuitively: factor from gradient (backward), and another in the forward !

SGD over is equivalent to SGD over with step size .

G(y) = F(λy) g(y) = f(λy) x̃ = λy

∇g(y) = λ∇f(λy)

G(y + γ∇g(y)) = F(λ(y + γλ∇f(λy))

G(y + γ∇g(y)) = F(x̃ + γλ2 ∇f(x̃))

λ

G(y) F(x̃) γλ2

https://github.com/adefossez/dnn_theo_practice

Training DNN, from theory to practice: github.com/adefossez/dnn_theo_practice

The parametrization issue
How to mess up with SGD.

20

, and . We define .

SGD over is equivalent to SGD over with step size .

If : no learning. If , divergence !

Ideal optimization: result independant of (second order, Newton method,
natural gradient etc.).

But: doesn’t work for non convex, doesn’t work for stochastic :’(

G(y) = F(λy) g(y) = f(λy) x̃ = λy

G(y) F(x̃) γλ2

λ ≪ 1 λ ≫ 1

λ

https://github.com/adefossez/dnn_theo_practice

Training DNN, from theory to practice: github.com/adefossez/dnn_theo_practice

Adaptive methods
A partial solution to the parametrization issue

21

Adagrad [Duchi et al. 2011]:

The division and squaring are per dimension !

One effective step size per dimension.

Converges as for any . No need to know .

xn+1 = xn − γ
∇fn(xn)

ϵ + vn+1

vn+1 = vn + (∇fn(xn))2

γ ϵ + v2
n

−1

O (1/ N) γ L

https://github.com/adefossez/dnn_theo_practice
https://www.jmlr.org/papers/volume12/duchi11a/duchi11a.pdf

Training DNN, from theory to practice: github.com/adefossez/dnn_theo_practice

Adaptive methods
A partial solution to the parametrization issue

22

Taking back . Let us denote

 is scaled by , which cancels the numerator !

 factor is canceled in the backward, only impacts in the foward.

No amplification as as with SGD.

gn(y) = fn(λy) x̃ = λ−1y

yn+1 = yn − γ
λ∇fn(x̃)

ϵ + vn+1

vn+1 = vn+λ2 (∇fn(x̃))2

vn λ2

λ

λ2

https://github.com/adefossez/dnn_theo_practice

Training DNN, from theory to practice: github.com/adefossez/dnn_theo_practice

Adam
Adaptive optimization for DNN

23

Effective learning rate decreases quickly with Adagrad, because is always
increasing. Instead Adam uses exponential moving average:

 with

Also introduces momentum , which is useful for unknown reasons.

vn

xn+1 = xn − γ
m̃n+1

ϵ+ṽn+1

mn+1 = β1mn+(1 − β1)∇fn(xn)

vn+1 = β2vn+(1 − β2)(∇fn(xn))2

m̃n =
mn

1 − βn
1

ṽn =
vn

1 − βn
2

mn

https://github.com/adefossez/dnn_theo_practice

Training DNN, from theory to practice: github.com/adefossez/dnn_theo_practice

Adam
Properties of Adam

24

Adam behaves just as Adagrad under scalar or diagonal reparametrization.

For a given number of iterations , given and ,
converges just as Adagrad without knowing L. [Defossez et al. 2020]

Same as SGD with constant step size: moves faster away from !

N β2 = (1 − 1/N) γ ∝ 1/ N
O (1/ N)

x0

https://github.com/adefossez/dnn_theo_practice
https://arxiv.org/pdf/2003.02395.pdf

Training DNN, from theory to practice: github.com/adefossez/dnn_theo_practice

Adam
Properties of Adam

25

Intuitively: Adam moves each dimension by the same amount at every
iteration.

Convergences requires . Default is (average of 1000 samples).

Recently, became popular too: it is more important to move by a
constant amount, than to converge.

β2 → 1 0.999

β2 = 0.9

https://github.com/adefossez/dnn_theo_practice

Regularization of DNN

Generalization and stability

Training DNN, from theory to practice: github.com/adefossez/dnn_theo_practice

L2 regularisation
a.k.a weight decay

Historically: Tikhonov regularization for under determined least mean square
regression, i.e. given , :

.

Useful when .

More widely known as L2 penalty or weight decay. With SGD, equivalent to

.

A ∈ ℝn×d y ∈ ℝn

min
x∈ℝd

∥Ax − y∥2 +λ∥x∥2

rank(A) < d

xn+1 = (1 − γλ)xn − γ∇fn(xn)

27

https://github.com/adefossez/dnn_theo_practice

Training DNN, from theory to practice: github.com/adefossez/dnn_theo_practice

L2 regularisation
a.k.a weight decay

L2 regularisation has two roles:

• Improve stability (in previous example, allow to compute),

• Improve generalization: Vapnik theory [Vapnik 1991], constraints on model
class improve generalization.

(AT A)−1

28

w*

Logistic regression for perfectly
separable data points:

.

Optimal solution verifies

P(x =) =
exp(xTw*)

1 + exp(xTw*)
∥w*∥ = ∞

https://github.com/adefossez/dnn_theo_practice
https://papers.nips.cc/paper/1991/file/ff4d5fbbafdf976cfdc032e3bde78de5-Paper.pdf

Training DNN, from theory to practice: github.com/adefossez/dnn_theo_practice

Regularization and DNN

Vapnik theory is not verified anymore (larger, more complex models can generalize
better than smaller ones). Still generalization helps in some cases.

Sometime replaced by early stopping (keep best model on valid).

Extra stability issue: for a DNN, is never Liptchitz, because of layer
multiplications.

Can lead to divergence even for Adam/Adagrad if change is too fast.

For Adam: bad interaction between denominator and L2 term, see AdamW
[Loshchilov et Hutter, 2019].

∇F

29

https://github.com/adefossez/dnn_theo_practice
https://arxiv.org/pdf/1711.05101.pdf

Training DNN, from theory to practice: github.com/adefossez/dnn_theo_practice

Other regularizations

Spectral normalization: prevent eigenvalues in each layer to become too large
(exactly controls overall Lipchitz factor) [Yoshida and Miyato, 2017].

WeightNorm: controls how quickly output scale can change [Salimans and Kingma, 2016].

, with , . Adam moves each each entry in by , scale
of moves by ().
with WeightNorm: , with , moves at most by .

BatchNorm, LayerNorm etc: same + normalized scale for the output.

Y = WX X ∈ ℝd W ∈ ℝ1×d W γ
Y dγ d ≈ 1000

W̃ = S∥W∥−1W S ∈ ℝ S γ

30

Related to Liptchitz factor

https://github.com/adefossez/dnn_theo_practice
https://arxiv.org/pdf/1705.10941.pdf
https://arxiv.org/pdf/1602.07868.pdf

Practical DNN training

Training DNN, from theory to practice: github.com/adefossez/dnn_theo_practice

Getting the code

Go to github.com/adefossez/dnn_theo_practice to
follow the code.

Provide a basic training loop using no
framework.

Also an example using PyTorch-Lightning and
Hydra.

32

https://github.com/adefossez/dnn_theo_practice
https://github.com/adefossez/dnn_theo_practice

Training DNN, from theory to practice: github.com/adefossez/dnn_theo_practice

The Experimental Research Process

33

Idea

Normalization,

data aug.,

skip connection,
attention,

etc.

Implementation
Add script argument to
enable/disable idea,
control scale.

Compare to baseline
Compare variants,
compare across seeds
(significant or luck?)

Does it work?

NO

YES

Write paper,

Open source code,

Ship to prod,

Get Turing Award.

https://github.com/adefossez/dnn_theo_practice

Training DNN, from theory to practice: github.com/adefossez/dnn_theo_practice

• 1 out 10 ideas works.

• Can take many cycles to work.

• Task variations (different datasets, models, etc).

• Experiment duration range from a few hours to
several weeks.

34

Pitfalls of experimental research
Mental
Charge

Scientist
with a

deadline

https://github.com/adefossez/dnn_theo_practice

Training DNN, from theory to practice: github.com/adefossez/dnn_theo_practice

• Easily try many variants and combinations (a.k.a. grid search).

• Exploit parallelism of a cluster.

• Easily keep track of experiments, compare and plot.

➡ Draw conclusion on what to try next.

• Resume interrupted experiments.

35

What do we need to succeed?

https://github.com/adefossez/dnn_theo_practice

Training DNN, from theory to practice: github.com/adefossez/dnn_theo_practice

• Each experiment should have a name (automatic ideally).

• Store logs and checkpoints using this name.

• Later, we can figure out which logs comes from which XP.

• Can resume interrupted training (error, crash, preemption).

36

Improved training loop

https://github.com/adefossez/dnn_theo_practice

Training DNN, from theory to practice: github.com/adefossez/dnn_theo_practice

• Grid search: cartesian product of hyper-parameters.

• With a cluster, you can test many experiments in parallel.

• Be smart: choose 1 or 2 hyper-parameters at once, then freeze
them and continue (develop and use intuition).

37

Grid searches

https://github.com/adefossez/dnn_theo_practice

Training DNN, from theory to practice: github.com/adefossez/dnn_theo_practice

• Experiments can quickly take several weeks.

• Distributed over G gpus: given batch B, split it in G groups of B / G.

• Compute gradient in parallel, average and sync gradient.

• Distributed Data Parallel: each GPU has its own process. All
processes run the same code.

• On single machine, simpler to use Data Parallel.

38

Distributed

https://github.com/adefossez/dnn_theo_practice

Training DNN, from theory to practice: github.com/adefossez/dnn_theo_practice

• Hydra provide hierachical YAML based configuration (YAML is nicer
than JSON for humans).

• Also provide logging, basic grid search support from the command line.

• Integrates with meta-optimizers like Nevergrad.

39

Tooling: Hydra https://github.com/facebookresearch/hydra

https://github.com/adefossez/dnn_theo_practice
https://github.com/facebookresearch/hydra

Training DNN, from theory to practice: github.com/adefossez/dnn_theo_practice

• Remove all boilerplate for checkpoints, logging, distributed etc.

• But you will lose flexibility and understanding.

40

Tooling: PyTorch-Lightning
https://github.com/PyTorchLightning/pytorch-lightning

https://github.com/adefossez/dnn_theo_practice
https://github.com/PyTorchLightning/pytorch-lightning

Training DNN, from theory to practice: github.com/adefossez/dnn_theo_practice

• Defines grid search as python files.

• XP identified by unique signature hash.

• What runs on the cluster is what you want.

• Basic reporting from the terminal.

41

Tooling: Dora https://github.com/facebookresearch/dora/

https://github.com/adefossez/dnn_theo_practice
https://github.com/facebookresearch/dora/

Training DNN, from theory to practice: github.com/adefossez/dnn_theo_practice

• Tensorboard: initially for tensorflow, also
for PyTorch and PyTorch-Lightning.

• Wandb: track experiment in your browser.

• HiPlot: compelling way of making sense of
the impact of hyper params on model
performance.

• Good old command line tools. Don’t
neglect those (grep, tmux, bashrc etc).

• See fd, ag or rg.

42

Tooling: Visualization

https://github.com/adefossez/dnn_theo_practice
https://www.tensorflow.org/tensorboard?hl=fr
https://pytorch.org/tutorials/intermediate/tensorboard_tutorial.html
https://pytorch-lightning.readthedocs.io/en/stable/extensions/logging.html
https://wandb.ai/site
https://github.com/facebookresearch/hiplot
https://github.com/sharkdp/fd
https://github.com/ggreer/the_silver_searcher
https://github.com/BurntSushi/ripgrep

Training DNN, from theory to practice: github.com/adefossez/dnn_theo_practice

• Self descriptive, generic (outer and inner product).

• One example for coding attention yourself:

43

“Einsum”: tensor product super powers

import torch

def attention(queries, keys, values):
 # String describes operation to perform using Einstein notation.
 # bct is first input shape [B, C, T]. Then second input.
 # After ->, output. c disappears, so inner product on c.
 # For keys, we use a second name for time `s`, and keep
 # `ts` in output: outer product on time steps.
 scores = torch.einsum("bct,bcs->bts", queries, keys)
 scores = torch.softmax(scores, dim=2)
 result = torch.einsum("bts,bcs->bct", scores, values)

queries = torch.randn(32, 64, 344)
keys = torch.randn_like(queries)
values = torch.randn_like(keys)
attention(queries, keys, values)

https://github.com/adefossez/dnn_theo_practice

Training DNN, from theory to practice: github.com/adefossez/dnn_theo_practice

That’s it!

Code and slides: github.com/adefossez/dnn_theo_practice

https://github.com/adefossez/dnn_theo_practice
https://github.com/adefossez/dnn_theo_practice

