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Non Convexe Stochastic
Optimization

SGD for deep neural networks



SGD for non convex optimization

Notations

Let F(x) = E[f(x)] forf : RY » R arandom variable.

d

x € R"™ are the weights of the model.
fis the loss over 1 training example at random.

I'is the loss over the entire training set.
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SGD for non convex optimization
Algorithm

d

For x, € R we define iteratively for all iterationn € N,

Aptel = An T }/an(xn)’

for a step sizey > 0, and taking f, ~ f i.i.d.
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SGD for non convex optimization

Assumptions

We make the following assumptions:

1. Fislower bounded by F-.
Vx € RY F(x) > F.

2. Fisl-smooth,i.e. VFis L-Liptchiz
Vx,y € R4|IVF(x) = VF()Il < Lllx —y|

3. The variance of gradient is bounded by o’
Vx € RY E [HVf(x) — VF(x)H2] < ¢°
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SGD for non convex optimization

COnvergence [Ghadimi et Lan, 2013]

Lett ~ %(0,...,N — 1) arandom time uniformly distributed over {0,...,.N — 1}.

Under the 3 assumptions stated before and if y < L, we have
F(XO) — F
yIN

= (IVE(x)I1P] <2 + yLo?,

In particular, taking y = 1/\5\7 (for N sufficiently large), we get

F(Xo) — F>x< LUZ 1
= IVE(I1?]) <2 +— =0
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Smoothness formula:

Y
F(y) = F(x) + J VF(z)'dz.

PrOOf (fOr the Cu riOUS) Defined as integral for t € [0,1] withz =ty + (1 — H)x, dz = (y — x)dr.

Z
VF(z) = VF(x) + [ V2 F(u)du . Gradient is Liptchiz < V?F < L
Using the smoothness of F, we have / x

i IVF(z) — VF(x)|| < L||z — x]||. Replace z with expression above,
Fp1) < FOq) =7 VG V) + =y LIVAC)I

Inject into F(y) formula, and you get the result.

Taking the expectation conditionally on (f;, ..., f,) (noted [£,), we get

1 1
EALFO,40] < F) = 7 VEG)VEG) + =7 LIV FGs) P 427 L,

Moving around the term

7IIVF(x)I? (1 yzL ) < F(x,) — —n[F(xn+1)]+%y2L02.

Now we sumover alln € {0,..., N — 1}, and take the full expectation. Note the blue terms telescopes !

N—1 }/L 1
Z yE [IIVF)I] (1 5 ) < F(xp) — F*+5Ny2L02.
n=0

(We used F(xy) > F). Then using the condition on the step size y and minor rewrites gives us the result !
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SGD for non convex optimization

Regimes

F )C = F>x<
IVEx)|1?] < o0 = F | yLo?,
yIN

Forgetting of the initial condition vs. asymptotic random walk.
For x, far from optimum, first term dominates (early training).
Large step size: moves away from x,, faster !

If we initialize to x. s.t. F(x:) = F, optimal step size: y = 0.

If y > 0, random walk around x: (as gradient is O on average).
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SGD for non convex optimization

Regimes
F(x,) — F L
2 0 - 2
= IVF()I?| <2 + yLo?,
}/N SOF N~ << - - -~~~ — === — = — — -
Forgetting of the initial condition vs. asymptotic Baor - ==y
random walk. \voeoem=
- - ——————————— A\ - —~—T—="
For DNN training, first regime is most important. Iy Whide
% 10 20 .t 13;(1) 40 50
La rge COﬂSta nt Step Size Used ﬁrSt- Each sharp drop is a 1z):<r.<1(leecr)ease of the step size.

Bold is validation and thin is training.
Credit: [He et al. 2015].

Theoretically, decrease step size only if training loss

stops improving. In practice, if we use valid loss because
of overfitting.
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Distributed optimization

What theory tells us



Distributed training for DNN
Synchronous distributed SGD

Jon

Instead of sampling single f, from Jsn | Jo

Jin Jan  Jan
training set, sample batch of size b: / /
fl,nﬂf2,n’ > o "fB,n’ : ’

VI + Viu(6) | V06) + Vian(6) | Vs (%) + Ve ()

Given W process, each with a gpu,
GPU 1 GPU 3

dispatch B/W over each machine. \ /

Average gradient across machines, !
update model and restart. gn=ézwi,n(xn)
i=1

Training DNN, from theory to practice: github.com/adefossez/dnn theo practice 12


https://github.com/adefossez/dnn_theo_practice

Distributed training for DNN
Synchronous distributed SGD

Advantage: simple, same theory as Jin | Lon Jan Jan | Jsn | Jou
single GPU. / /

Disavantage: need to wait on g, to be

fully computed and averaged before Vi) + V()| VE.0) + Vi) | Vs () + Vs (x,)
starting 8n+1 GPU 1 GPU 3

|dea: asynchronous updates ? Theory is \ | /

complex and in practice doesn’t work
better!

1 6
=—» Vf,
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Speedup of Synchronous SGD

The impact of mini-batching

N is total number of iterations, not samples ! - (IVEG)I?] < 2F(x0) — I /Lo
o &
Variance for batch size B is reduced UI% — E

For batch size B:

We note 1%  process time for a batch of size B F(xy) — F«  yLo?
B,W - [IIVE)|?] < 22—

with W workers. yN B

In practice, Iy w < Ig dueto
communication latency.
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Speedup of Synchronous SGD

The iteration vs. variance trade-off

If Wworkers, takingE = WB, we have

I's w = Tp . Given total time budget 7, we can process W
more samples, but nb of iterations it still the same.

F(x,) — F. .\ yLo?
yN BW

= IVFCI?] <2

For W large, variance termis =~ 0, no more gains.

No magic: gain only up to a point, then plateau !
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Extreme speed-up in practice

Accurate, Large Minibatch SGD:

Due to high variance, initial batch size ~ 64. Training ImageNet in 1 Hour

Priya Goyal Piotr Dollér Ross Girshick Pieter Noordhuis
Lukasz Wesolowski  Aapo Kyrola Andrew Tulloch Yangqging Jia Kaiming He

Up to 4 to 8 GPUs (depends on model complexity) Facebook
distribution keeping same batch size requires no -

C h a n ge o Deep learning thrives with large neural networks and I /

large datasets. However, larger networks and larger
datasets result in longer training times that impede re-

64 128 256 512 1k 2k 4k 8k 16k 32k 64k
mini-batch size

w
[$)]

w
o

search and development progress. Distributed synchronous
SGD offers a potential solution to this problem by dividing

[ [ ]
° SGD minibatches over a pool of parallel workers. Yet to
B eyo n d 8 G P U , u S e fo | | OW I n g t rI C kS L] make thls scheme eﬁcient, the per_worker workload must
be large, which implies nontrivial growth in the SGD mini-
batch size. In this paper, we empirically show that on the

N
[6)]

ImageNet top-1 validation err

N
o

An example of extreme speed up on image net,
and the tricks required.
Credit: [Goyal et al. 2018].

» Increase batch size by factor K.

» Increase learning rate by factor K or \/E if
diverges.

« Gradual warmup of learning rate.
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Adaptive optimization

A single learning rate to rule them all !



The parametrization issue
How to mess up with SGD.

Let F(x) = E[f(x)] for f : RY » R arandom variable.

Let us take 4 € R*. We define G(y) = F(Ay), and g(y) = f(1y).

This is a scalar reparametrization of the original function space.

Ve@ly) = AVf(1y)

Training DNN, from theory to practice: github.com/adefossez/dnn theo practice



https://github.com/adefossez/dnn_theo_practice

The parametrization issue
How to mess up with SGD.

G(y) = F(1y),and g(y) = {(1ly). We define X = Ay.
Vel = AVf(4y)
Gy +rVeWy) = FA(y + yA Vi(dy))
G(y +yVeg®y)) = F( +yA* VEQ®)
Intuitively: A factor from gradient (backward), and another in the forward !

SGD over G(y) is equivalent to SGD over F(X) with step size y1°.

Training DNN, from theory to practice: github.com/adefossez/dnn theo practice
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The parametrization issue
How to mess up with SGD.

G(y) = F(1y),and g(y) = {(1ly). We define X = Ay.
SGD over G(y) is equivalent to SGD over F(X) with step size y1°.
If A < l:nolearning. If A > 1, divergence!

Ideal optimization: result independant of 4 (second order, Newton method,
natural gradient etc.).

But: doesn’t work for non convex, doesn’t work for stochastic :'(
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Adaptive methods

A partial solution to the parametrization issue

Adagrad [Duchi et al. 20111:

The division and squaring are per dimension !

1
One effective step size y\/e + v,f per dimension.

Converges as 0 (l/ﬁ) for any y. No need to know L.
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Adaptive methods

A partial solution to the parametrization issue

Taking back g (v) = f.(1y). Let us denote ¥ = A1y

ynl =yn_y

Vet = v A2 (VE®)

v _is scaled by 4%, which cancels the numerator !

A factor is canceled in the backward, only impacts in the foward.

No amplification as 17 as with SGD.
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Adam

Adaptive optimization for DNN

Effective learning rate decreases quickly with Adagrad, because v, is always
increasing. Instead Adam uses exponential moving average:

~/

X — x mn+1
— — Y m
S ' y\/ €+Vp41 m, =3 ,B
. M1
Myr1 = ﬁlmn_l_(l - ﬁl) Vf;fz(xn) with 5 _
n T _ﬁéz

Vet =Bt =B (V)

Also introduces momentum m,, which is useful for unknown reasons.
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Adam

Properties of Adam

Adam behaves just as Adagrad under scalar or diagonal reparametrization.

For a given number of iterations N, given p, = (1 — 1/N) and y « 1/\ﬁV,
converges just as Adagrad O (1/\/N) without knowing L. [Defossez et al. 2020

Same as SGD with constant step size: moves faster away from x;, |

Training DNN, from theory to practice: github.com/adefossez/dnn theo practice
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Adam

Properties of Adam

Intuitively: Adam moves each dimension by the same amount at every
iteration.

Convergences requires 5, — 1. Default is 0.999 (average of 1000 samples).

Recently, f, = 0.9 became popular too: it is more important to move by a
constant amount, than to converge.
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Regularization of DNN

Generalization and stability



L2 regularisation
a.k.a weight decay

Historically: Tikhonov regularization for under determined least mean square
regression, i.e. given A € R™4 y € R":

: 2 2
min ||Ax — y||* +4]|x]|~.
xeR?

Useful whenrank(A) < d.

More widely known as L2 penalty or weight decay. With SGD, equivalent to

x,.1=U0—-y)x, —yVJ (x,).
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L2 regularisation
a.k.a weight decay

L2 regularisation has two roles:

» Improve stability (in previous example, allow to compute (ATA)_I),

* Improve generalization: Vapnik theory [Vapnik 19911, constraints on model
class improve generalization.

Logistic regression for perfectly
separable data points:

T
x Plx = ) = exp(x” ws)

1 4+ exp(xTws)

o * Optimal solution verifies ||wx|| = oo
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Regularization and DNN

Vapnik theory is not verified anymore (larger, more complex models can generalize
better than smaller ones). Still generalization helps in some cases.

Sometime replaced by early stopping (keep best model on valid).

Extra stability issue: fora DNN, V F'is never Liptchitz, because of layer
multiplications.

Can lead to divergence even for Adam/Adagrad if change is too fast.

For Adam: bad interaction between denominator and L2 term, see AdamW
[Loshchilov et Hutter, 2019].
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Other regularizations
Related to Liptchitz factor

Spectral normalization: prevent eigenvalues in each layer to become too large
(exactly controls overall Lipchitz factor) [Yoshida and Miyato, 20171.

WeightNorm: controls how quickly output scale can change [salimans and Kingma, 20161.

Y = WX, with X € R4, W € R4 Adam moves each each entry in W by Y, scale
of Y moves by dy (d ~ 1000).
with WeightNorm: W = S||W||~'W, with S € R, S moves at most by 7.

BatchNorm, LayerNorm etc: same + normalized scale for the output.
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Practical DNN training



Getting the code

Go to github.com/adefossez/dnn theo practice to

follow the code.

airplane EQ}\ V-.:-ﬁ;
automobile EE"“‘
bird a;- ﬂ:\ ™ !-

=  HESHNEZEs P
ceer 15 VI 0 S 11 I O
g [HESHSBOAK R

frog EEESESDANE
e RN IO RS E
ship =T =
ruck o] M) A P S B () S R

def do_epoch(epoch, model, loader, optimizer=None):

Provide a basic training loop using no

framework.

Also an example using PyTorch-Lightning and

Hydra.

Training DNN, from theory to practice: github.com/adefossez/dnn theo

device = next(model.parameters()).device

average = averager()

for input_, label in loader:

input_ = input_.to(device)
label = label.to(device)

prediction = model(input_)

loss = F.cross_entropy(prediction, label)
predicted_label = prediction.argmax(dim=1)
accuracy = (label == predicted_label).float().mean()

metrics = {
'loss': loss,
'accuracy': accuracy,

}

metrics = average(metrics)

if optimizer is not None:
loss.backward()
optimizer.step()
optimizer.zero_grad()

label = 'test' if optimizer is None else 'train'
print(f'[{label: <5}] {epoch:04d}, '

f'loss: {metrics["loss"]:.3f}, '
f'acc.: {metrics["accuracy"]:6.2%}"')

return metrics

practice

"""Run a single epoch, either in training or evaluation mode, if “optimizer" is None."""

32
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The Experimental Research Process

Normalization,
data aug.,

skip connection,
attention,
etc.

Implementation enable/disable idea,
control scale.

W —— Does it work? Compare to baseline
rite paper, .
Open source code Compare variants,
Shi ’ compare across seeds
G 'tp_I:[O_prog" J (significant or luck?)

et Turing Award.

YES

Training DNN, from theory to practice: github.com/adefossez/dnn theo practice
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Pitfalls of experimental research

 1out10 ideas works.
» Can take many cycles to work.
« Task variations (different datasets, models, etc).

» Experiment duration range from a few hours to
several weeks.

Training DNN, from theory to practice: github.com/adefossez/dnn theo practice

Scientist

with a
deadline
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What do we need to succeed?

» Easily try many variants and combinations (a.k.a. grid search).
» Exploit parallelism of a cluster.
» Easily keep track of experiments, compare and plot.

= Draw conclusion on what to try next.

 Resume interrupted experiments.

Training DNN, from theory to practice: github.com/adefossez/dnn theo practice
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Improved training loop

» Each experiment should have a name (automatic ideally).
» Store logs and checkpoints using this name.
» Later, we can figure out which logs comes from which XP.

« Canresume interrupted training (error, crash, preemption).

Training DNN, from theory to practice: github.com/adefossez/dnn theo practice
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Grid searches

» Grid search: cartesian product of hyper-parameters.
» With a cluster, you can test many experiments in parallel.

e Be smart: choose 1or 2 hyper-parameters at once, then freeze
them and continue (develop and use intuition).

Training DNN, from theory to practice: github.com/adefossez/dnn theo practice
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Distributed

» Experiments can quickly take several weeks.
» Distributed over G gpus: given batch B, splititin G groupsof B / G.
 Compute gradient in parallel, average and sync gradient.

» Distributed Data Parallel: each GPU has its own process. All
processes run the same code.

* On single machine, simpler to use Data Parallel.

Training DNN, from theory to practice: github.com/adefossez/dnn theo practice
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TOO I i n g: H yd ra https://github.com/facebookresearch/hydra

» Hydra provide hierachical YAML based configuration (YAML is nicer
than JSON for humans).

» Also provide logging, basic grid search support from the command line.

* Integrates with meta-optimizers like Nevergrad.

Hypral¥

Training DNN, from theory to practice: github.com/adefossez/dnn theo practice
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Tooling: PyTorch-Lightning

https://qgithub.com/PyTorchlightning/pytorch-lightning

 Remove all boilerplate for checkpoints, logging, distributed etc.

» Butyou will lose flexibility and understanding.

Maximal flexibility No boilerplate Self contained Modular

Maximal flexibility models
3 B

’ B T £ Research Engineering
code code
z = encoder(x)
x_hat = decoder(z) Q\,
=

Extensions Data

def training_step(self, batch, batch_nb):
X, y = batch

z = self.encoder(x)

X _hat = self.decoder(z)

mse = F.mse_loss(x_hat, x)

gan_reqularizer = self.discriminator(x_hat)
loss = mse + gan_regularizer

return loss
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TOO I i ng: Do ra https://qithub.com/facebookresearch/dora/

» Defines grid search as python files.
« XP identified by unique signature hash.

* What runs on the cluster is what you want.

» Basic reporting from the terminal.

(env) » Q@dev[intro_practical_dl]/intro_practical_dl git:(dora) dora grid my_grid
Monitoring Grid my_grid
Meta | | train test

97d170el 46014124 | 0.273 90.75% ©0.890 74.09%

1lr=0.01 f5b313bd 46014126 | 0.001 100.00% 1.690 64.76%

model=mobilenet_v2 9ead75da 46010996 | ©.494 83.18% | 0.855 72.97%

1lr=0.01 model=mobilenet_v2 010000f3 46014128 | 0.030 99.24% 2.238 60.96%
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TensorBoard SCALARS IMAGES GRAPHS  DISTRIBUTIONS  HISTOGRAMS
3

D Show data download links Q Filter tags (regular expressions supported)

Ignore outliers in chart scaling
epoch_accuracy

Tooltip sorting method: default

Tooling: Visualization -

Horizontal Axis
STEP RELATIVE
Runs o EE

rite a regex to filter runs

epoch_accuracy

epoch_loss
) 20190225-183554/train P

O 20190225-183554/validation enoch.loss

» Tensorboard: initially for tensorflow, also ==
for PyTorch and PyTorch-Lightning.

» Wandb: track experiment in your browser.

\§
& opoV
0.42

» HiPlot: compelling way of making sense of
the impact of hyper params on model 3

performance.

0.24 -
0.22
0.20

» 800 -
0.18 /

\ X
e Good old command line tools. Don’t S e '\

@dev/timm2 fd -d 1 '.x' -x sh -c 'echo {}; cat {}/run_x/summary.csv | tail -n 1'
p_penalty=0.1_group-size=8_pretrained
,3.5048252003533498,1.0108134375,75.292,92.924,5.817074298858643,5.947787284851074

neglect those (grep, tmux, bashrc etc
, , [ ) ,3.4995868035725186,0.89917,81.158,95.658,10.559024810791016,9.138511657714844
p_penalty=0.01_group-size=8

,2.8587126902171542,0.9513128125,77.382,93.918,8.072959899902344,8.737812042236328
p_penalty=0.5_group-size=8

,4.970405987330845,1.2356575,70.992,90.544,3.727231979370117,3.8965940475463867
p_penalty=0.05_group-size=8

. 9,3.0909746885299683,1.01999625,76.374,93.356,5.795430660247803,6.120972633361816
, . p_penalty=0.1_group-size=8

,3.307918225015913,1.1356646875,75.26,92.75,4.980111598968506,5.214414596557617
@dev/timm2 I
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“Einsum”: tensor product super powers

» Self descriptive, generic (outer and inner product).

* One example for coding attention yourself:

import torch

def attention(queries, keys, values):
# String describes operation to perform using Einstein notation.
# bct 1s first input shape [B, C, T]. Then second 1input.
# After ->, output. c disappears, so inner product on c.
# For keys, we use a second name for time s, and keep
# "ts 1n output: outer product on time steps.
scores = torch.einsum("bct,bcs->bts"”, queries, keys)
scores = torch.softmax(scores, dim=2)
result = torch.einsum("bts,bcs->bct", scores, values)

queries = torch.randn(32, 64, 344)
keys = torch.randn_like(queries)
values = torch.randn_l1ke(Ckeys)
attention(queries, keys, values)
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That’s it!

Code and slides: github.com/adefossez/dnn theo practice
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