# SING: Symbol-to-Instrument Neural Generator FAIR<sup>1</sup> / École Normale Supérieure<sup>2</sup> / INRIA<sup>3</sup> / PSL Research University<sup>4</sup>

Alexandre Défossez<sup>1,2,3,4</sup>, Neil Zeghidour<sup>1,2,3,4</sup>, Nicolas Usunier<sup>1</sup>, Léon Bottou<sup>1</sup> and Francis Bach<sup>2,3,4</sup>

Architecture Abstract onv transpose K = 1024, S = 256, Convolution  $K = 1, S = 1, C = 4096, \text{ReL}^{-1}$ onvolution K = 1, S = 1, C = 4096, ReLConvolution K = 9, S = 1, C = 4096, ReLU sion spectral loss based on the log-power spectrogram of the generated  $s_3(VIP)$ audio.  $(u_V, v_I, w_P, z_1) \ (u_V, v_I, w_P, z_2) \ (u_V, v_I, w_P, z_3)$ erator with a convolutional decoder. • Input of the LSTM: embeddings  $(u_V, v_I, w_P) \in \mathbb{R}^2 \times \mathbb{R}^{16} \times \mathbb{R}^8$  from look-up tables, time embedding  $z_T \in \mathbb{R}^4$ . obtained from an autoencoder. • Output = temporal representation of the sound  $s_i(VIP) \in \mathbb{R}^{128}$  at 62.5 Hz. Convolutional decoder upsample it from 62.5Hz to 16kHz. dataset. **Instrument embeddings** locity. Generalizes to unseen combination of pitch and instrument. **NSynth dataset** Instrument embeddings from the look-up table projected in 2D using T-SNE [3]. **Reconstruction** losses Training - autoencoder: take the symetric of the decoder and train an autoencoder for 50 epochs: 12 hours on 4 GPUs. **II - sequence generator:** match the output of the LSTM-based RNN with the output of the frozen encoder using MSE. 50 epochs using truncated backpropagation with length 32, takes 10 hours. **III - end-to-end sing:** fine tune the whole architecture end-to-end

SING is a deep learning based music notes synthetizer that can be trained on the NSynth dataset. NSynth is composed of 300,000 notes from over 1,000 instruments. Each note is a 4 seconds long waveform sampled at 16kHz. We obtain state-of-the-art results compared to the NSynth wavenet-like autoencoder [1][2] as measured by Mean Opinion Scores based on human evaluations, for a model that is 32 times faster to train and 2,500 faster for inference. • We generate directly a waveform and introduce a differentiable regres-• Architecture based on standard modules: LSTM-based sequence gen-• Specific pre-training procedures based on matching the embedding • State-of-the-art MOS (Mean Opinion Scores) and ABX on the NSynth • Input is disentangled representation of the pitch, instrument and vehttps://github.com/facebookresearch/SING 300,000 notes from a 1000 instruments, all pitches at 5 velocities (= intensity). Each note  $x_{V,I,P} \in [-1,1]^{64,000}$  is 4 seconds at 16,000 Hz indexed by a triplet  $(V, I, P) \in \{0, \dots, 4\} \times \{0, \dots, 1005\} \times \{0, \dots, 120\}$ . For each instrument, keep 10% of the pitches for the test set. We want to evaluate the distance between the generated waveform  $\hat{x}$ and the ground truth x. Either MSE on the waveform: or using a spectral loss:

$$L_{wav}(x, \hat{x}) := ||x - \hat{x}||^2,$$

$$L_{\text{stft},1}(x,\hat{x}) := \|l(x) - l(\hat{x})\|_{1}$$

where  $l(x) := \log \left( \epsilon + |\operatorname{STFT}[x]|^2 \right)$ .



for 20 epochs, takes 8 hours on 4 GPUs. **In total:** 30 hours on 4 GPUs to train.

## facebook Artificial Intelligence Research



|                              |               | Spect | ral loss | Wav MSE |        |
|------------------------------|---------------|-------|----------|---------|--------|
| Model                        | training loss | train | test     | train   | test   |
| Autoencoder                  | waveform      | 0.026 | 0.028    | 0.0002  | 0.0003 |
| SING                         | waveform      | 0.075 | 0.084    | 0.006   | 0.039  |
| Autoencoder                  | spectral      | 0.028 | 0.032    | N/A     | N/A    |
| SING                         | spectral      | 0.039 | 0.051    | N/A     | N/A    |
| SING<br>no time<br>embedding | spectral      | 0.050 | 0.063    | N/A     | N/A    |

## **Comparison of generated rainbowgrams**



From left to right: ground truth, nsynth, SING with spectral loss, SING with wavform loss, SING with spectral loss and no time embedding. Rainbowgram [1] computed from the waveform, the intensity of the color is proportional to the log-power spectrogram while the color itself encode the derivative of the phase. The vertical axis represents frequencies in logarithmic scale, horizontal axis is time.

## Human evaluations

| Model         | MOS           | Training time (hrs * GPU) | Generation speed | Compression factor | Model size |
|---------------|---------------|---------------------------|------------------|--------------------|------------|
| Ground Truth  | $3.86\pm0.24$ | -                         | -                | -                  | -          |
| Wavenet       | $2.85\pm0.24$ | 3840*                     | 0.2 sec/sec      | 32                 | 948 MB     |
| SING          | $3.55\pm0.23$ | 120                       | 512 sec/sec      | 2133               | 243 MB     |
| · · · · · · · |               |                           |                  |                    |            |

(\*): adjusted to account for difference in FLOPs of GPUs used.

**MOS:** for each model, 100 samples are evaluated by 60 humans on a scale from 1 ("Very annoying and objectionable distortion") to 5 ("Imperceptible distortion") using Crowdmos toolkit [4] for removing

**ABX:** Ask 10 humans to evaluate for a 100 examples if Wavenet or SING is closest to ground truth. 69.7% are in favor of SING over

[1] J. Engel, C. Resnick, A. Roberts, S. Dieleman, D. Eck, K. Simonyan, and M. Norouzi. Neural audio synthesis of musical notes with wavenet autoencoders. Technical Report 1704.01279, arXiv, 2017 [2] A. Van Den Oord, S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. Wavenet: A generative model for raw audio. Technical Report 1609.03499, arXiv, 2016. [3] L. Maaten, G. Hinton. Visualizing Data using t-SNE. In JMLR 2008.

[4] F. Ribeiro, D. Florencio, C. Zhang, and M. Seltzer. Crowdmos: An approach for crowdsourcing mean opinion score study. ICASSP 2011.



## **Ablation study** -

## References