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Abstract

Neural networks improved the state of the art for many classical signal processing tasks:
audio source separation, speech enhancement, speech synthesis, synthesis of instruments
etc. Existing models working directly in the waveform domain already exists, but their
computational complexity does not allow to run them on CPU, and even training them
on GPU can be a slow process. In this thesis, we aim at developing an architecture
able to process waveforms, that is both fast and accurate. Our approach uses recurrent
layers along with transposed convolutions, thus reducing the number of auto-regressive
steps which would otherwise slow down the model. For pure generation, we avoid the
use of a costly classification loss, relying instead on a differentiable loss on the log power
spectrum. We obtain state-of-the-art results for the task of instrument modeling and
music source separation. The training of such models requires the use of stochastic
optimization techniques. We introduce a rule for aggregating gradients within a batch
which speeds up convergence for sparse convex problems. Finally, we provide strong
guarantees of convergence for the Adam and Adagrad algorithms when applied to non
convex optimization.

Résumé

Les réseaux de neurones ont permis d’améliorer l’état de l’art pour de nombreuses tâches
classiques de traitement du signal: séparation de sources audio, débruitage, synthèse de
voix ou d’instruments. Des modèles fonctionnant dans le domaine temporel existent déjà,
mais demandent trop de capacité de calcul pour pouvoir fonctionner sur CPU, et même
leur entraînement sur GPU peut s’avérer coûteux. Dans cette thèse, nous nous proposons
de développer une architecture capable de traiter l’audio dans le domaine temporel tout
en étant rapide et précise. Notre approche utilise des couches récurantes suivies de
convolutions transposées, ce qui permet de limiter le nombre de pas auto-régressifs qui
pourraient sinon ralentir le modèle. Pour la génération pure, nous évitons l’usage d’un
objectif de classification qui serait coûteux, lui préférant un objectif differentiable sur le
spectre en log-puissance. Nos modèles atteignent l’état de l’art pour les tâches de mod-
élisation d’instruments de musique et la séparation de sources musicales. L’entraînement
de ces modèles nécessite l’utilisation de techniques d’optimisation stochastique. Nous
présentons une nouvelle règle d’aggrégation des gradients au sein d’un mini-batch qui
permet d’accélerer la convervence pour des problèmes convexes et sparses. Finalement,
nous établissons des garanties de convergences pour deux algorithmes d’optimisation
classiques, Adam et Adagrad, quand ils sont appliqués à un problème non convexe.
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1. Introduction

In the present work, we wish to tackle the task of fast audio synthesis with deep learning
models. By fast we mean a model that can produce audio in real time on a consumer level
CPU. There is a growing divide between the computational power available in research
clusters and high end devices, and the democratized market of computers, phones and
on-board devices. While audio synthesis has seen solid improvements, for instance with
WaveNet (see Section 1.2.1), the training of such models is computationally expansive
and evaluation of those models is slow on consumer hardware. Furthermore, audio
generation is likely to be only a part in a complex pipeline. By making it as lightweight
as possible, we free up resources for the more complex tasks that would command or
complete the synthesis process (conversation, planning, locomotion etc.). As the rate
of the transistor miniaturization has almost halted, it would be risky to ignore this
problem by waiting for more powerful hardware. Besides, designing new models to
run on existing low end devices will help deploy them to the widest possible audience,
while limiting planned obsolescence. Henderson et al. [2020] support accounting early
on for the environmental impact of deep learning models in order to build sustainable
technologies1

A key difficulty of audio generation is that a single perceptual experience can be
caused by any signal sampled from a complex distribution with infinite support, while
for images, there exist an almost bijective mapping between RGB pixel values and what
we see. Playing twice the same note on an organ will likely result in two completely
different realizations, which forbids the use of a regression loss directly on the waveform.
The approach taken by state-of-the-art deep synthesis models is to model the entire dis-
tribution of waveforms. This requires performing conditional classification over at least
256 classes per time step (16,000 times per second of audio for speech, 44,100 for music),
and at evaluation time, each step is predicted in an autoregressive manner. As this step
alone cannot scale on CPU2 it is interesting to investigate alternative architecture and

1While we did not track the exact impact of the present work, we estimate its CO2 emissions from
powering the GPUs to be equivalent to 5 to 10 Paris/New York round trips.

2Taking a simple non trivial model, an LSTM with 2 layers, 32 inputs and 256 outputs, it takes 3.3
seconds to generate 1 second of audio at 44.1 kHz.
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losses. We focus on music tasks for different reasons: because they cover a wide diversity
of timbre and pitches, because they require a high sampling rate for commercial appli-
cations (which is a good way to assert the scalability of a model) and finally by mere
personal preference.

The driving idea for this work is that it should be sufficient for the model to chose
a canonical member of the waveform distribution, rather than modelling the entire dis-
tribution probability. In Chapter 2, we present SING, a universal synthesizer capable
of modeling a thousand instruments with a subjective quality significantly higher than
that of a WaveNet based auto-encoder for a fraction of its computational resources, at
train or evaluation time. We introduce a simple architecture based on a LSTM followed
by transposed convolutions that transform the internal representation from being high
dimensional at a low sample rate, to the output waveform which is low dimensional
at a high sampling rate. The change in sampling rate allows to have the LSTM auto-
regressive layer scale, while still being able to model long range dependencies. In order
to remedy the problem of doing regression over a distribution problem, we use a re-
gression loss over the log-power spectrogram of the outputted waveform. This allows to
partially collapse the entire distribution of waveforms to a single point in the quotient
space. While promising, spectrogram losses still suffer from limitations: they do not
penalize some irregularities in the phase and are harder to optimize due to their many
local minima (inconsistent choices of phase over multiple segments). Besides, for sounds
containing noise, the power spectrogram is itself stochastic, and we fall back on the same
regression over a distribution problem.

In Chapter 3, we leave aside the problem of the loss to focus only on building an
efficient architecture by studying the problem of audio source separation for music.
Audio source separation is different from pure synthesis: as we have access to an input
mixture, there is often a single possible output waveform. Music source separation
benchmarks are sampled at 44.1 kHz, which reinforces the importance of having fast
models with a limited number of auto-regression steps. So far, the state-of-the-art was
achieved with models predicting a mask over the input spectrogram. Those models scale
well but have specific limitation, and in particular make the attack of instruments sound
dull and hollow, and cannot model well drums. We present Demucs, a U-Net based
recurrent and convolutional architecture that improved on spectrogram methods while
still being able to separate audio faster than real time on CPU. A convolutional encoder
takes the input signal and transform it to a high dimensional representation with a low
sampling rate. We then apply the same recipe as with SING: a recurrent layer with
few time steps is applied and upsampled back to the output waveform with transposed

10



convolutions. The U-Net connections allows to directly pass fine grained details from
the encoder to the decoder without making them go through the bottleneck.
In order to train any deep learning model, one need optimization methods that scales

well with the number of parameters of the model and the size of the dataset, while being
relatively robust to the choice of hyper-parameter. In Chapter 4, we introduce AdaBatch,
a simple aggregation rules of gradients for mini-batch stochastic gradient descent that
allows to speed up convergence for sparse problems by improving the conditioning of
the problem. On standard sparse datasets, it matches the performance of Adagrad, but
requires no extra memory storage. While not directly related to the task of audio mod-
eling, this work allows to better understand stochastic optimization. The reconditioning
performed is a limited second order method that only accounts for the sparsity of the
data (not its scale or covariance), but is stable in the stochastic setting. In Chapter 5 we
provide a bound on the convergence of two widespread adaptive algorithms, Adagrad and
Adam, for non convex optimization. Adam is one of the most popular methods to train
deep learning network so that understanding its behavior is important to derive practi-
cal guarantees. We provide a unified proof for Adagrad and Adam and in the absence
of heavy-ball momentum, it is relatively short. There is currently limited theoretical
results on why momentum helps. In fact, all the known bounds for SGD or adaptive
methods with momentum in the non convex settings worsen as we add momentum. We
provide a longer proof for this case, while improving the dependency in the momentum
parameter, but still not showing a theoretical benefit.
In Chapter 6, we develop our ideas for future work on deep audio synthesis, both in

terms of architecture and loss. We also present research direction for developing novel
optimization methods that would behave like second order methods while being stable
in the stochastic setting.
In the rest of this chapter, we cover the basic background on signal processing in

Section 1.1, the historical context and our contribution to the task of pure audio syn-
thesis in Section 1.2, before moving on to the problem of music source separation in
Section 1.3. Finally, we present the important aspects of stochastic optimization along
our contribution to the field in Section 1.4.

1.1. A short primer on sound

This section provides a short background on Digital Signal Processing (DSP) along with
context on the complexity of the audio processing tasks we introduce in the next sections.
We introduce in Section 1.1.1 and 1.1.2 the basics of DSP, and then present the vocoder
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in Section 1.1.3, a now standard family of audio models able to perform tempo stretching
and pitch shifting. We finish with a discussion on the limitations of vocoders due to their
assumptions on the content of sound in Section 1.1.4.

1.1.1. From the physical world to the digital waveform

At the physical level, sound is the evolution of pressure in the air at a given point through
time. For this evolution to be heard by the human hear, pressure needs to oscillate
around its average value at a frequency between 20 Hz and 20 kHz. A microphone
consist in a membrane attached to a device able to translate the mechanical movement
induced by the change of pressure into an electrical signal. Such a device can consist in
an induction coil moving in the magnetic field of a magnet: the movement of the coil
in the magnetic field creates an electrical currant whose tension follows the oscillations
of the sound wave reaching the microphone. On the other hand, a loud speaker is the
opposite device: the same electrical currant sent through the coil will lead back to the
same movement of the membrane, which will induce a change of pressure in the air.
Thus, we can restrict ourselves to the study of a function y(t) ∈ R with t ∈ R, where

t is the time (measured in seconds for instance) and y one of the quantity of interest
(pressure, current location of the membrane, electrical tension). As all recording or
playback devices have a limited range, y(t) will be restricted to [−1, 1] where −1 and 1
represent the most extreme displacements that the speaker or microphone can achieve.
Still, computers can only deal with discrete data, thus it is required to discretized the
values y(t). This can be achieved using standard IEEE 754 float encoding over 32 bits,
or linear coding over 16 bits integers as done in most WAV audio files. More compressed
representations such as the µ-law logarithmic encoding over 8 bits have also been used for
voice encoding in telecommunications. While the latter lead to a significant reduction
in quality, it has been popularized again with the work of Oord et al. [2016] using
deep learning to model waveforms, as the coding limited cardinality allows to use a
classification loss. It is also necessary to discretize the time axis; the Nyquist-Shannon
sampling theorem [Shannon, 1949] tells us that for any signal containing no frequency
higher than fs/2, it is possible to reconstruct it perfectly from equally spaced samples,
with at least fs of them per second. We have already noticed that the human hear
cannot perceive frequencies beyond 20 kHz, so a sampling rate of 40 kHz should be
sufficient for our needs. In practice, it is required to have the signal go through a low
pass filter to prevent aliasing. It is not possible to build a perfect low pass filter with
a finite impulse response [Smith, 2007], which means the filter cannot have a perfect
cutoff at 20 kHz and one need a bit more capacity to allow for the attenuation band of
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the filter, thus leading to the choice of the standard 44.1 kHz sampling rate, used by
audio CD, most streaming services and digital audio libraries. While music makes use
of the entire range of the human hear, it is not the case for all applications: telephony
typically uses a sampling rate of 8 or 16 kHz, which is sufficient for conveying meaning
but alters the texture of the sound in a way that is recognizable.
For a given sampling rate fs in Hz depending on the application at hand, we define a

monophonic waveform as Y ∈ [−1, 1]Tfs , with T the duration of the signal in seconds,
chosen so that the number of samples S = Tfs is an integer. A stereophonic waveform
will consist in two monophonic ones, i.e., Y ∈ [−1, 1]2×Tfs . While audio with any number
of channels could be studied, this setup will be sufficient for our needs.

1.1.2. The time-frequency representation of sound

A small chunk of an audio signal can be analysed thanks to the Discrete Fourier Trans-
form [Smith III, 2011]. In order to prevent the apparition of artificial high frequencies,
the chunk is made periodic by multiplying it with a window function that goes to zero
on the edge, like the Hann window (a.k.a. the raised cosine window). By splitting
the audio signal into overlapping chunks, and then taking their DFTs, one obtains a
time-frequency representation called the Short-Time Fourier Transform (STFT). It is
then possible to re-synthesize the audio from the STFT by computing the inverse DFT
over each chunk and using the overlap add method [Allen, 1977]. This last operation
is called the Inverse Short-Time Fourier Transform (ISTFT). The output of the STFT
is complex valued, but while its modulus (the amplitude spectrogram) contains most of
the meaningful information for discriminative purposes, it is not possible to synthesize
realistic audio without its phase.
Note that one can see the STFT as a convolution of the input signal with a filter bank.

Other filter banks have been developed, for instance the gammatone filter banks which
is used as a model of the human auditory system and the cochlea [Wang and Brown,
2006]. The wavelet transform, as popularized among others by Mallat [1999] is another
alternative. While the STFT has a fixed time resolution for all frequencies, the wavelet
transform time resolution increases with frequency3. The downside of this varying time
resolution is that one would need to sample different frequency coefficients at different
rates. In order to remedy this problem, Andén and Mallat [2014] introduced a scattering
transform, which pools high frequency features over time, but retains their variations
through a recursive scattering up to a certain order. However, this transformation

3Due to the Heinsenberg-Gabor limit, the product of the time and frequency resolution is lower bounded
so that any time-frequency representation has to decide on a specific trade-off.
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is not explicitly invertible, which makes it better suited for classification or detection
tasks rather than synthesis. When reconstruction is not a requirement, it is possible to
further transform the STFT time-frequency representation, for instance by reducing the
frequency resolution (while keeping the time resolution constant) through averaging, like
for the mel-spectrogram [Mermelstein, 1976], thus reducing the number of coefficients
while retaining roughly the same discrimination capacity as the human hear. This is
particularly popular for speech recognition [Davis and Mermelstein, 1980]. Even if the
mel-spectrogram is not mathematically invertible to a waveform, natural sounds have
enough regularity that they can be convincingly inverted by deep learning models [Shen
et al., 2018, Prenger et al., 2019]. Finally, rainbowgrams were introduced by Engel et al.
[2017]. They conveniently represent the log-power magnitude for a specific frequency,
but also the derivative of the phase, i.e. the instant frequency. The latter is color
coded (explaining the name) while the amplitude is represented as the intensity of the
color (black when the frequency is absent, full color when it is present). They allow to
visually spot phase artifacts when modeling audio. Examples of mel-spectrograms and
rainbowgrams are given on Figure 1.1.

1.1.3. The vocoder: an analysis/synthesis framework

A vocoder is a tool made of an analyser and a synthesizer, so that the output of the
analyzer can be modified before being fed to the synthesizer. The name is the contraction
of voice coder as vocoders were primarily developed for applications related to telephone
communications. The quality of a vocoder is evaluated by two criteria: (i) the ease
of interpretation and modification of the analyser output, (ii) the quality and absence
of artifacts of the synthesizer output, especially after complex transformations of the
analyser output. For instance, the identity function is a vocoder which would grade
perfectly with respect to (ii) but very poorly with (i).

As first noticed by Flanagan and Golden [1966], the DFT provides a prime tool to
build a vocoder. Their initial approach had too many artifacts, in particular because
they did not use overlapping chunks. The refinement of the STFT/ISTFT by Allen [1977]
allowed to develop a higher quality vocoder that could perform a change of tempo while
leaving the pitch unchanged [Portnoff, 1981], changing the pitch while leaving the tempo
unchanged [Seneff, 1982], or both at the same time [Moulines and Laroche, 1995]. Not all
artifacts were removed though and large transformation deteriorated the texture of the
sound, adding a characteristic called phasiness. Laroche and Dolson [1997] studied this
issue and suggested some fixes. For instance, due to the windowing, a single stationary
cosine would have non zero coeffecients over multiple frequency bins of the STFT, which
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would be treated as multiple weaker cosines, each at one of the neighbouring frequencies.
With the change of pitch/tempo, the phase of each cosine would drift away, leading to a
“hollow” sound4. Part of the solution requires detecting peaks on the frequency axis and
performing a phase locking of the nearby frequencies. Further trouble arises when one
realises that the formula used to transform the phase from one tempo/pitch to another
is only valid for a roughly stationary process. The attack of an instrument acts as a
reset of the phase to a new random distribution. Using the transformation formula over
an attack will dull it. Thus, peaks must also be detected on the time axis in order to
detect transients and perform a phase reset at this point [Roebel, 2003].

1.1.4. The content of sound: periodicity and noise

The underlying assumption behind the STFT or phase locking vocoders is that an audio
signal is composed of the sum of a few, mostly stationary, periodic cosine-like functions.
This is especially true for the phase locked vocoder developed by Laroche and Dolson
[1997]. This assumption is so powerful that it formed the basis for a large part of the
early development of electronic music5 and in particular synthesisers [De Wilde, 2016].
As summarized by Shepard [2013], the majority of synthesizers start from a simple
periodic function (cosine, triangular, sawtooth) at the right fundamental frequency and
shape it through the use of filters and envelopes. While it would be naive today to assume
that this approach can recreate any sound, it is possible to achieve rather convincing
imitations of a piano, violin, bass guitar or even basic vocalization with them [Engel
et al., 2020].
Despite the success of electronic synthesizers and vocoders, it is not possible to reduce

sound to a sparse combinations of cosines. Take the calming sound of the rain falling on
the roof of a building. The time of impact of each drop of water can be approximated
as independent from one another. The combinations of the many impacts will form a
specific stochastic texture. Other examples of stochastic textures can be found in the
sound of a snare drum, or in some phonemes in speech (say “sh” for instance). A simple
but artificial example of stochastic texture is given by white noise, which is characterized
by coefficients of equal modulus on average over all frequencies and with a random phase.
The formula used for updating the phase when changing the tempo or pitch relies on the
stationary sparse sum of cosines assumption and will not work when applied to white

4Note that this effect is sometime desired. The compositor Vangelis makes heavy use of two independent
cosines with neighbouring frequencies for its chorus like quality.

5Another large part is based on sampling, i.e., recording a short audio waveform before filtering it and
playing it back with a given pattern.
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Figure 1.1.: Different time-frequency representations for a snare drum sample (left) and
an FM synth note (right). The same audio is represented as a log-power
mel-spectrogram (top), and a rainbowgram (bottom). Notice the harmonic
structure of the FM synth, while the snare covers a wide range of frequencies.
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noise. It will add a structure to the phase that was not present in the original audio,
the same being true for more complex stochastic textures. Phase locking will detect
spurious maxima along the frequency axis and bind together random variables that were
independent. In order to account for noise-like components, more complex vocoders
will try to separate the contribution of stationary cosines and of noise [Morise et al.,
2016]. We show on Figure 1.1 different time-frequency representations introduced in
Section 1.1.2 for two sounds of very different nature: a snare drum which contains high
levels of stochasticity and a note played by a Digitone FM synthesizer, with a strong
harmonic structure.

1.1.5. Conclusion

In this section, we have studied the nature of sound, from the underlying physical process
to the sampled waveform stored on a computer. We have introduced the basic tools for
the analysis, modification and synthesis of sound, namely the time-frequency represen-
tation given by the STFT and its inverse transform the ISTFT. We have seen how those
tools allows to perform complex transformation of audio signals such as tempo stretching
or change of pitch. We have also learnt that those approaches work best for a stationary
sparse sum of cosines. For real world sounds, more complex rules are required in order
to account for the frequency resolution of the STFT, the preservation transients, or the
presence of stochastic textures. Those problems illustrate the difficulty of the model-
ing of audio processes, which can be somewhat simplified by the use of time-frequency
representations, but only under certain assumptions.

1.2. Neural audio synthesis of music instruments

We will now turn to the task of pure audio synthesis. We first provide context on the de-
velopment of audio synthesis models for Text-To-Speech (TTS), before presenting mod-
ern deep learning audio generation models and their application to music instruments
modeling. Finally we give a short overview of our contribution, a universal instrument
synthesizer, with improved perceived quality for a fraction of the training and evaluation
time.

1.2.1. From concatenative models to end-to-end generation

Concatenative TTS Historical approaches to TTS leveraged a database of utterances
along with their context, i.e. phonemes perfectly annotated with the preceding and
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followings phonemes. In order to generate a specific sentence, one would first trans-
late it to a sequence of phonemes and search in the database for the most appropriate
samples [Hunt and Black, 1996] and concatenate them. While this lead to realistic and
artifacts free audio with a database sufficiently large, the uterrances collection process
must be repeated entirely to model new voices. As an alternative, statistical models
were developed, based on two parts: (i) a model able to estimate the statistical char-
acteristics of the speech, (ii) a synthesizer or vocoder able to turn those characteristics
into a voice [Airaksinen, 2012]. This lead to more compact TTS systems and with a
more natural flow through the sentence but more artifacts at the phoneme level due
the limitation of the synthesizer or the vocoder [Ze et al., 2013]. Statistical character-
istics will typically be the fundamental F0 frequency for voiced speech and the spectral
envelope. Indeed, one of the simplest model of speech is the source-filter model [Fant,
1970]: an impulse train at a frequency F0 produced by the vocal chords goes through
the vocal tract that acts as a linear filter. This filter can be approximated by a Finite
Impulse Response (FIR) filter whose coefficients are optimized to reproduce the spectral
enveloped on observed data. In practice, some phonemes require not an impulse train
as input but white noise (voiced vs unvoiced speech) which is an extra characteristic the
statistical model has to infer. Many more vocoders were developed, and a comparison
was performed by Hu et al. [2013].
While the concatenative approach suffers from the prohibitive size of the dataset re-

quired to obtain a convincing synthesis (and a collection process that must be entirely
repeated for every new voice), the statistical approach is quickly limited by the necessity
of a deep understanding of the way speech is produced by humans as well as a com-
putable model, as a model too simple would not sound natural. Deep learning models
offer the capability to model complex phenomena in an accurate but black-box fash-
ion [Goodfellow et al., 2016]. Regarding TTS, they were first put to use in order to
improve the accuracy of the statistical estimation models [Ze et al., 2013, Zen et al.,
2016]. The bottleneck for the quality of the generated speech then moved to the vocoder
part.

Deep learning based audio synthesis A small revolution happened when Oord et al.
[2016] found a way to combine the naturalness of concatenative model with the compact-
ness of model-based speech synthesis. They developed WaveNet, the first deep learning
network able to directly generate a waveform. When conditioned on the speech charac-
teristics, like the one obtained from speech statistical models, WaveNet is able to output
realistic audio for any of the 109 speakers it was trained on. However, WaveNet is fun-
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damentally sequential: for every time step of the waveform to generate, it predicts a
probability distribution given the previous samples and conditioning variables. It then
sample from this distribution before feeding the chosen value back to the system to pre-
dict the next time step. Given that a waveform is typically sampled between 16 kHz
(for research purpose) or up to 44.1 kHz (for commercial quality), this process cannot
be achieved in real time, not even with batching and on accelerated hardware [Kalch-
brenner et al., 2018]. During training, WaveNet uses the ground-truth as input which
allows to parallelize the computation of the output for different time steps which mitigate
the issues. Oord et al. [2017] introduced Parallel WaveNet which removes the need for
autoregression, leading to faster inference but it requires distillation from a previously
trained WaveNet model, which means even longer training times.

Other methods were developed like SampleRNN, [Mehri et al., 2016] made of multiple
RNNs operating at different time scale and conditioned on the RNNs at coarser time
scales. This multiscale approach allows to overcome the difficulty of handling very long
sequences with RNNs, both in terms of gradient stability and speed, however, it did
not significantly improve on WaveNet. Prenger et al. [2019] offered a faster alternative,
with WaveFlow: a flow based approach to modeling audio at the waveform level. A flow
based approach consist in transforming a known distribution, like a standard Gaussian,
into a target distribution, like a dataset of audio samples. The transformation must be
explicitely invertible and its Jacobian easy to compute which allows the likelihood of the
generated audio to be derived from the likelihood of the matching Gaussian samples.
The authors introduce specific operators that verifies those condition, as this rules out
the use of standard deep learning components (convolutions etc.). The authors report
a speed of generation on GPU of 520 kHz against 0.11 kHz for WaveNet, matching the
speed of Parallel Wavenet at 500 kHz without the need for an extra distillation step.

One reason for the slowness of WaveNet is that it requires modeling an entire distri-
bution for a given input. Indeed, we have seen in Section 1.1.4 that audio is usually
made of a sparse combination of cosines with given frequencies mixed with stochastic
textures. Both can have an infinite number of waveform representations, all percep-
tually equivalent (cosines can be shifted, stochastic textures can be drawn again from
its distribution). To model those, WaveNet predicts the distribution of each time step,
conditioned over the previous ones. This approach is fundamentally sequential: at train
time, this can be alleviated by using batching and teacher forcing Bengio et al. [2015],
but not at evaluation time. Parallel WaveNet [Oord et al., 2017] solve this issue by
replacing the conditioning over previous time steps by an sampled gaussian noise. The
model must be trained by distillation of a WaveNet model, leading to a long and com-
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plex training procedure. The representation of the conditional probability is in itself
another problem. WaveNet uses 256 possible outcomes using µ law encoding, but with
a degradation of audio, while Parallel WaveNet uses a logistic mixture model. Given
that each time step is typically encoded on two bytes, e.g. 65,536 possible outcomes,
Kalchbrenner et al. [2018] presents WaveRNN, which splits the classification into two
256 classes predictions, one for the higher bits and the other for the lower bits. They
achieves a generation speed of 96 kHz on GPU, the speedup being explain in part by the
efficient representation of the conditional probability, as well as shallower architecture
than WaveNet. Those approaches all require extensive work to scale to real time when
running on CPU6.

1.2.2. Using spectrograms for invariant audio synthesis

We now discuss an alternative to the exact distribution modeling approach used by
WaveNet or WaveRNN, in order to still be able to output the predicted waveform directly
through regression rather than classification using a differentiable loss over amplitude
spectrograms.
Taking the modulus of the time-frequency representation given by the STFT intro-

duced in Section 1.1.2 gives a representation that is mostly invariant to the different
waveform realizations. This fact is leveraged for speech recognition by first transform-
ing the input audio to an amplitude spectrogram or one of its variants such as the
mel-spectrogram [Mermelstein, 1976]. Predicting an invariant representation is more
convenient as it can be done by regression rather than distribution estimation. However
what is missing is a way to transform this unique representation to a specific waveform.
One possibility is to use the Griffin-Lim algorithm [Griffin and Lim, 1984], which consist
in a fix point optimization over an initial guess of the phase in order to match the given
spectrogram. However, the optimisation problem having many local minima, it is un-
likely to perfectly match it. Shen et al. [2018] developed a TTS engine called Tacotron
which uses a deep learning model in order to predict the amplitude spectrogram for a
given input text, and use the Griffin-Lim algorithm in order to generate audio. For mu-
sic note synthesis, Engel et al. [2017] also made use of the Griffin-Lim algorithm along
with a convolutional autoencoder trained on amplitude spectrograms. In both case, sig-
nificant artifacts were observed, with superior quality obtained when using a WaveNet
vocoder. Shen et al. [2018] introduced Tacotron 2 which replaces Griffin-Lim with a

6A recent refinement of WaveRNN combined with heavy sparsification scale to real time on CPU, using
all available cores: https://ai.facebook.com/blog/a-highly-efficient-real-time-text-to-speech-[...]-on-
cpus/.
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WaveNet conditioned over the input mel-spectrogram, with a significant gain in quality
as measured with Mean Opinion Scores (MOS).
While it would be possible to try to predict the phase directly with a machine learning

model, this would be almost equivalent to predicting the waveform directly. Instead
Engel et al. [2019] suggest to predict the instant frequency, i.e., the derivative of the
phase, which has the advantage of being unaffected by the shift of any of the sparse
cosine components. The instant frequency is then integrated over time to obtain one
possible choice of phase. While this approach has proven successful for the NSynth
dataset, where each sample is made of a single well aligned note, with mostly harmonic
instruments, it is more difficult to use on real life audio. In particular, the same problem
occurring for the phase vocoders we introduced in Section 1.1.3 still apply: (i) the instant
frequency for stochastic textures is still random (ii) during the attack of an harmonic
instrument, a phase reset happens, leading to a random instant frequency.
Finally, it is possible to optimize the output waveform in order to match the charac-

teristics of a given target amplitude spectrogram using gradient descent as pioneered in
the work of Caracalla and Roebel [2017] for audio texture synthesis. In the following
section, we reuse this approach as part of the end-to-end training of a deep learning
model using the automatic differentiation of the log-amplitude spectrogram operator.

1.2.3. Contributions

In Chapter 2 we present SING, a Symbol-to-Instrument Neural Generator, achieving
state-of-the-art synthesis quality at a fraction of the training and inference time of other
neural vocoders. SING takes as input a one hot encoding of the instrument, pitch
and velocity to generate and output the complete waveform sampled at 16 kHz. It is
trained on the NSynth [Engel et al., 2017] dataset, made of 300,000 notes sampled at
16 kHz from over 1,000 instruments, covering each instrument entire chromatic range
with 5 velocities, i.e., intensities, for each note. The modeling of music instruments can
be done using similar technology as the one developed for speech synthesis, but this
task also presents specific challenges: the diversity of timbre and wide frequency range
covered.
SING uses an LSTM followed by convolutions and a transposed convolution that trans-

form the high dimension but low sampling rate output of the LSTM into a low dimension
but high sampling rate waveform. Remember that WaveNet could generate audio at 0.11
kHz, WaveGlow and Parallel WaveNet at about 500 kHz for speech. SING generates
audio at 8.2 MHz on GPU, or 512 seconds of audio for every second of processing time.
On CPU, SING works at 188 kHz, or 12 seconds of audio per second of processing time.
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In order to train the SING universal note synthesizer, we chose to output directly
a waveform, but compute its amplitude spectrogram in order to derive a loss in the
spectrogram domain, which we call a spectral loss. This allows the model to make to
most convenient choice of phase. The main difference with using Griffin-Lim is that the
recovery of phase is done as part of an end-to-end loss. In contrast, using Griffin-Lim is
a post processing step, whose limitations are not taken into account during training. For
instance, as not all amplitude spectrogram match a real waveform signal, it is possible
for the model to output an invalid spectrogram which will be projected onto the set of
real spectrograms, a difference not accounted for in the training loss. Finally, Griffin-Lim
is a relatively slow algorithm which requires many iterations to converge. Once trained,
SING perform only a single feed-forward pass which directly output the waveform.
Our approach allowed us to obtain a music note synthesizer that outperformed both

the Griffin-Lim and WaveNet approach on NSynth in terms of perceived quality and
fidelity, for a fraction of the training and inference cost. However, some limitations
remain: the use of the spectral loss still suffers from some issues common to any method
optimizing over an amplitude spectrogram. As noted by Sturmel et al. [2011], if a
signal x minimizes this loss, so does −x. It is then possible for the model to make two
inconsistent choice of phases in two parts of the signals, one predicting x and the other
−x. At the boundary betwen the two, the signal will cancel out. Because each part
is pushing to opposite directions, their gradients cancel and we have a local optimum
that cannot be escaped with regular gradient methods. This effect can be heard when
listening to the generated samples for a flute, which is particularly stationary, where the
inconsistent choices of phase can be heard as a slight beating.

1.2.4. Conclusion

We have studied pure audio synthesis, i.e., without any input waveform. The first
methods for TTS used pre-recorded utterances that are then selected and concatenated
into a final sentence. However, this methods will lead to unnatural transitions between
phonemes and requires recording a lot of speech for any new voice to synthesize. Sta-
tistical models can estimate parameters for specifically designed vocoders. They don’t
need as much data and are quite compact once the model is trained. However, vocoders
are hand designed and cannot cover the complexity of real life sound making. Thus,
those models lack naturalness at the phoneme level. Deep learning based models such
as WaveNet, WaveRNN or WaveGlow were developed as universal vocoders. Compared
with hand-crafted systems, they can model audio in a black-box but complete manner.
Because such models try to estimate the entire probability distribution of the output
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waveform, they can be quite costly to run. Using an amplitude spectrogram based loss
and a simple recurrent and convolutional architecture, we developed SING which al-
lows for real time synthesis even on CPU. On the task of instrument modeling, SING
achieved higher performance than a WaveNet based autoencoder for a fraction of the
training and evaluation time. It also outperforms a Griffin-Lim based spectrogram au-
toencoder, which shows the interest of using a spectral loss over the waveform rather than
doing spectrogram inversion as a post-processing step. While the approach is promising,
the NSynth datasets consist mainly of harmonic instruments for which the amplitude
spectrogram is mostly constant over realizations of the same sound. However, speech
contains quite a bit of stochastic textures, for which even the amplitude spectrogram
is stochastic and using our loss as is might result in a robotic voice. In Chapter 6, we
explore potential directions to solve this and open the way to fast speech synthesis on
CPU.

1.3. Music source separation in the waveform domain

We now turn to a task requiring both analysis and synthesis: music source separation.
Source separation was first introduced in the context of speech, when Cherry [1953]
defined the “cocktail party effect”, namely the ability of the brain and auditory system
to focus on a single conversation in a noisy environment, such as a cocktail party. This
problem was later extended to the task of Audio Source Separation (ASS) for speech and
music. Unlike TTS, or music note synthesis, a source separation model has access to
an input signal, in particular it doesn’t have to model the phase structure from scratch.
This led to the development of different techniques compared with pure synthesis. In
particular, it is possible to learn a mask over the input spectrogram, i.e., using the
input phase when generating the output, which achieves higher quality than doing phase
reconstruction with Griffin-Lim. This makes spectrogram methods more appealing than
for TTS. Besides the input audio is sampled at 44.1 kHz for the standard music source
separation datasets, which emphasizes the scaling issues of methods like WaveNet. Those
differences explains that unlike for TTS and pure synthesis, waveform domain methods
have been so far less successful for this task. The presence of the input waveform mostly
reduces the distribution of outputs to a single point, so that we can focus more on the
architecture, while using a simple regression loss over the waveforms.
In this section, we first cover blind source separation methods, before detailing su-

pervised approaches, both in the spectrogram and waveform domain. We finish with
presenting our contribution Demucs, the first waveform model to surpass spectrogram
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models for the separation of music sources.

1.3.1. Blind source separation

Bregman [1990] formalized the ability of the brain to process auditory signals and identify
relevent sources as Auditory Scene Analysis (ASA). As the understanding of the human
psychoacoustic machinery improved, efforts were made to transpose such capabilities to
computers, i.e., enabling Computational Auditory Scene Analysis. This initial goal was
different from audio source separation, and mostly considered the extraction of semantic
features from mixed sources, for instance multiple pitch estimation, speech transcription
etc [Wang and Brown, 2006]. New techniques allowed to aim for a more ambitious goal:
the recovery of waveform for each source.
The first of those techniques is Independent Component Analysis (ICA), introduced

in the seminal paper of Jutten and Herault [1991]. ICA consist in finding components
that are as independent as possible, for a specific non linear measure of independence.
In order for the model to be identifiable, ICA requires at least as many mixtures (so
that the collection of mixing weights are linearly independent) as the number of sources.
For the cocktail party problem, one application would be when multiple microphones
are located in the room, with as many of them as people in the room. ICA is composed
of a rich family of approaches, with different independence criteria or optimization algo-
rithms [Comon, 1994, Bell and Sejnowski, 1995, Hyvarinen, 1999]. Each criteria measures
independence, and their diversity is explained by the fact that while independence is the-
oretically well defined, there is no single way to measure the level of independence of
two distributions for which we only have access to samples.
While ICA showed promising results and allowed to recover individual waveforms,

the constraint on the number of mixtures is only met in practice when dedicated mi-
crophone arrays are available. In most practical applications, such as phone calls or
visio-conference without dedicated hardware, only monophonic data is available. For
music applications, stereophonic audio is the standard, but a song contains more than
two instruments. Even if stereo provides useful cues, humans are still able to perceive
the different instruments with monophonic playback. Thus, the task of monoral source
separation presents a significant interest. In such cases, the problem of source separation
is necessarily ill-posed without further assumptions. One such assumption is that real
life audio comes from a specific distribution rather than being a mixture of any possible
waveforms. By modeling the distribution of waveforms from individual sources, one can
extract a likely combination of sources. This approach was first developed by Roweis
[2001]: for two sources, the amplitude spectrogram for each one is modeled by a sepa-
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rate HMM. For each time step and frequency bin, whichever HMM explains the best the
observed coefficient “wins” the bin. This provides a masking of frequency bins varying
through time for each source, which can then be used to filter the mixture waveform and
recover estimates of the sources.
Another approach consists in performing segmentation, like in computer vision, over

amplitude spectrograms [Bach and Jordan, 2005]. In order to perform the clustering,
cues are adapted from psychoacoustic observation. For instance, a continuous horizontal
line (i.e., the same frequency present over a period of time) is likely to come from a
single source. Besides, multiple horizontal lines starting at the same time are also likely
to come from the same source, especially if they are harmonically related. Although
appealing, one limitation of this approach is the need to hard code those cues rather
than infer them automatically from the data.
Power spectrograms are non-negative, which allows for the usage of a specific factor-

ization called Non-negative Matrix Factorization (NMF), discovered by Paatero [1997]
and Lee and Seung [2001]. The idea is to represent the amplitude spectrogram P as a
product WD where W and D are themselves non-negative. D represents a dictionary
of spectral patterns and W is the weighting over time of the dictionary entries that
come closest to P . Unlike regular matrix factorization, the non-negativity means that
there cannot be any cancellation between two dictionary entries: like in real life, differ-
ent sounds always add up7. [Smaragdis, 2004] noticed that this representation provides
a natural separation of different music sources. However, complex sources cover more
than one dictionary entry, showing the limits of monoral blind source separation. When
supervised data is available, i.e., recordings of individual sources, it is possible to train
a dictionary per source with NMF before computing the weights for a given amplitude
spectrogram over the union of those dictionaries. Separation is then easily performed by
remixing the contributions from a single dictionary. In order to obtain an estimate of
the individual waveforms, either the separated amplitude spectrogram can be multiplied
by the original signal phase and transformed with the ISTFT or a phase reconstruction
algorithm like Griffin-Lime can be used, although with more artifacts [Virtanen, 2007].

1.3.2. Supervised source separation

We have seen that blind source separation is a difficult problem when there is less mix-
tures than the number of sources. It is possible to achieve some results with the use of
psychoacoustic inspired cues but such approaches are quickly limited by our own under-

7Sounds can sometimes cancel out, but only for carefully designed and synchronized sources, such as
with noise canceling headphones, or complex reflection patterns.
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Figure 1.2.: The standard benchmark MusDB [Rafii et al., 2017] for music source sepa-
ration consist in separating instruments grouped in four categories: drums,
bass, other accompaniments and vocals.

standing of the human hearing and our ability to model it. Supervised source separation
assumes the availability of individual sources which can then be mixed to obtain training
examples along with their ground truth. This allows the definition of objective metrics,
even if subjective evaluation remains the gold standard. Work on providing such metrics
started by Schobben et al. [1999], and later Vincent et al. [2006] provided the framework
used in Chapter 3, in particular the Signal to Distortion Ratio (SDR) which measures
the overall quality of the reconstruction, and the Signal to Interference Ratio (SIR)
which quantifies the amount of leakage from the other sources. Vincent et al. [2007]
then organized the first audio separation evaluation campaigns, which continued until
the last one as of writing [Stöter et al., 2018]. Those campaigns provides a photographic
record of the evolution of the field: while in 2007, blind source separation with ICA or
NMF was the main focus, it shifted to supervised source separation using deep learning
in 2018. The last campaign was evaluated on the MusDB dataset, collected by Rafii
et al. [2017], which consists in about 10 hours of commercial level music sampled at 44.1
kHz with the ground truth for four different sources presented on Figure 1.2: drums,
bass, other accompaniments, and vocals.
Yilmaz and Rickard [2004] noted that applying a binary mask to an amplitude spectro-

gram and synthesizing the waveform from each source using the input phase yields very
convincing results when the ideal mask is known. As a refinement, it is also possible to
use a ratio mask with coefficient in [0, 1], which can better model sources with conflicting
frequencies [Reddy and Raj, 2007]. This allows to transform the separation problem into
a classification problem, where each frequency bin is labeled with the source it belongs
to. This is of course reminiscent of the seminal work of Roweis [2001] we presented
earlier.
Deep Neural Network (DNN) are perfect candidates for estimating the ideal mask,
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and they were quickly put to the task for music source separation [Uhlich et al., 2015] or
speech separation [Huang et al., 2015]. Besides, most music tracks being stereophonic,
Nugraha et al. [2016] improved prediction accuracy by estimating the spatial covariance
matrices for the power spectrum and deriving a multichannel Wiener filter [Wiener,
1964]. Uhlich et al. [2017] later studied the impact of different data augmentation
strategies, which is critical given the limited amount of data in standard datasets like
MusDB. Standard data augmentation includes swapping of audio channels, shuffling of
sources between tracks, and applying random gains on sources. More complex data aug-
mentation can be used, such as randomly changing the pitch or tempo of the sources,
using the vocoders introduced in Section 1.1.3 [Cohen-Hadria et al., 2019]. As part
of the SiSec 2018 evaluation campaign, MMDenseNet [Takahashi and Mitsufuji, 2017]
and MMDenseLSTM [Takahashi et al., 2018] proved to be the best spectrogram domain
models. They consist in multiple multiscale dense net blocks [Huang et al., 2017] with a
U-Net structure [Ronneberger et al., 2015], with different weights for different frequency
bands. MMDenseLSTM further adds LSTMs operating at different time scales. While
their authors did not provide the source code for their models, Stöter et al. [2019] re-
leased OpenUnmix, an open source spectrogram based model matching the performance
of the MMDenseLSTM, but with a simpler architecture based on a bidirectional LSTM
with extra fully connected layer and Wiener filtering.

In the waveform domain, Lluís et al. [2018] developed a WaveNet inspired architecture,
but regression-based and non auto-regressive. Around the same time, Stoller et al. [2018]
introduced Wave-U-Net, a U-Net based architecture, with significantly better accuracy
than theWaveNet approach. Wave-U-Net was inspired by a U-Net architecture operating
on amplitude spectrograms capable of separating the vocals from a song [Jansson et al.,
2017]. However, Wave-U-Net performance did not match existing spectrogram methods,
with an overall SDR over all sources of 3.2, against 5.3 for Open-Unmix. In the field
of speech source separation however, a different approach allowed to surpass the Ideal
Ratio Mask (IRM) oracle. The model called ConvTasnet [Luo and Mesgarani, 2019]
consists in a simple convolutional encoder and decoder which is masked by a more
complex model. The masking sub-model consists in a succession of convolutional blocks
with skip connections and increasing dilations but a stride of 1, similar to the WaveNet
model. The fact that a waveform domain model can achieve higher performance than an
oracle on the spectrogram is a strong indicator of the intrinsic limitations of spectrogram
methods. One limitation is that the phase contains important information on the texture
of the sound. For instance, small variations of the frequency will be encoded in the
phase, as well as information on the localization of transients in time. If two sources
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Figure 1.3.: Mel-spectrograms (limited to frequencies under 8 kHz) for an extract of the
song “Androgyny” by Garbage and individual stems obtained with Demucs.
From left to right: original, drums, bass, other, and vocals. Click on a
spectrogram to listen to the audio.

overlap in frequencies, the sharing of the phase will lead to unavoidable bleeding of
those characteristics and a deterioration of the transients. Finally, masking methods are
subject to another limitation: the mixing of a loud source with a quiet one might lead
to a loss of information. Imagine a strong crash cymbal overtaking the end of a light
piano note. Masking method might not be able to recover the weak signal that was lost
in the mix, while a model with sufficient capacity could “imagine” the end of the note,
which we conjecture is a process likely to happen in the brain itself.

1.3.3. Contributions

In Chapter 3, we present Demucs, a time domain model for music source separation
inspired by both the Wave-U-Net and SING architectures. The model consist in a con-
volutional encoder that gradually reduces the number of time steps while increasing
the number of channels. Then a bi-directional LSTM provides contextual information
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to improve the prediction of the model. Finally, a decoder based on transposed con-
volutions gradually increases the number of time steps while decreasing the number of
channels. Each layer from the encoder is connected to the matching layer of the decoder
through a U-Net Ronneberger et al. [2015] skip connection. The use of Gated Linear
Units [Dauphin et al., 2017] in the encoder and decoder increased the capacity of the
model by allowing masking-like operations (but not restricting it to masking only). In
order to provide a strong baseline in the waveform domain, we adapted Conv-Tasnet [Luo
and Mesgarani, 2019] to the task of music source separation.

When trained on MusDB, both Demucs and Conv-Tasnet surpass existing spectrogram
or waveform domain methods in terms of the overall SDR. While Conv-Tasnet achieves a
sligthly higher SDR than Demucs and less bleeding between sources, human evaluations
show that it suffers from more artifact. We conjecture that this is due in part to its
limited receptive field: because it uses a stride of 1 for all convolutions, it cannot handle
long sequences without using excessive amounts of memory and is limited to a context of
the order of a second at most, against 10 seconds for Demucs. When training Demucs, we
did notice that a longer context improved performance. Finally, Conv-Tasnet predicts a
mask over a learnt linear transformation of the input audio that has a kernel size of 20
samples only. On such a small window, it is possible for multiple sources to momentarily
cancel out. The masking approach cannot produce any output audio if the input is zero
on a given window of 20 samples, which could introduce extra artifacts.

Demucs particularly shines for the drum source: human listeners rated the natural-
ness of its samples at 3.8 out of 5, against 3.4 for Conv-Tasnet and 3.1 for OpenUnmix.
This provides further evidence of the limitation of time-frequency representations for
percussive sounds. On the other hand, the naturalness of vocals separated by a spec-
trogram method like OpenUnmix is rated at 3.0, against less than 2.6 for Demucs and
Conv-Tasnet. Indeed, we noticed static noise in the vocal estimates of Demucs and
Conv-Tasnet. This is likely because of the time domain regression loss which allows for
small inconsistent mistakes to be made for each time step, while a spectrogram mask
will make a consistent choice over an entire STFT window.

Finally, the Demucs model is quite big, 2GB8, but can separate a song on CPU in about
the same time as the duration of the song, while Conv-Tasnet requires about 3 second
of processing time per second of audio. On Figure 1.3, we show the mel-spectrograms
for the mixture and individual sources estimated by Demucs on the song “Androgyny”
by Garbage. You can click on each spectrogram to listen to the corresponding audio.

8Early work using quantization can reduce this size to about 256MB.
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1.3.4. Conclusion

We have studied the task of music source separation. While the field historically de-
veloped around blind separation, it shifted in the recent years to the task of supervised
source separation. Deep learning models achieved great results, first in the spectro-
gram domain. While initial work on waveform domain models did not achieve the same
level of performance, we showed that they can in fact outperform spectrogram domain
methods, in particular for percussive sounds, which are not well represented with spectro-
grams because of their many transients and lack of harmonic structure. We introduced
Demucs, a novel U-Net time domain architecture based on a convolutional encoder, a
recurrent layer for modeling long term dependencies and a convolutional decoder. De-
mucs achieves a good balance between speed, separation quality and naturalness of the
produced audio, which made it relatively popular with a mainstream audience 9, despite
the unfriendliness of running research code.
We noticed that Demucs and other time domain methods produced artifacts especially

when separating vocals. We conjecture that this is because they make inconsistent
mistakes per time step, which introduces a kind of static noise. Combining the spectral
loss presented in Section 1.2 with a time domain regression loss might help reducing
those artifacts.

9See https://www.youtube.com/watch?v=4_l31Vucrmo.
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1.4. Stochastic Optimization

So far, we have mostly studied how to “optimize” the architecture of deep learning
models for audio tasks, in order to achieve high quality, fast evaluation on CPU and
decent training time. We now turn to a different aspect: given an architecture, how to
efficiently choose its weights to obtain the best possible metric.

1.4.1. Empirical Risk Minimization

The training of any machine learning model, and deep learning networks in particular,
requires the fitting of its free parameters, or weights, in order to minimize the error
on the task at hand [Bishop, 2006]. This error is defined as a loss function measuring
the distance between the prediction of the model and the ground truth, as well as a
distribution of inputs and labels. For instance, for the task of music source separation
we introduced in Section 1.3, the true input distribution would be the set of all possible
songs, the ground truth would be the separate waveforms for the drums, bass, vocals
and the rest and the distance could be either the MSE, L1 or any other metric on
the waveform. However, it is usually impossible to either characterize the entire set of
inputs of interest (all possible songs) or obtain the ground truth for all. Therefore, we
restrain ourselves to a finite dataset sampled from the true distribution, hoping that it is
representative enough so that a model minimizing the training loss over it would perform
well on unseen samples. This approach is called empirical risk minimization [Vapnik,
1992]. Formally, the empirical risk is given as a function F (x) with x ∈ Rd the parameters
of the machine learning model we consider. F can be decomposed as a sum of risks over
individual training examples (fi)i∈[M ] (with [M ] = {1, . . . ,M}):

F (x) = 1
M

M∑
i=1

fi(x). (1.1)

It is possible to characterize how well a model will generalize from its empirical training
set to the true distribution [Vapnik, 2006]: larger models will typically have worse perfor-
mance outside of their training set. The theory of generalization and empirical risk min-
imization allows to separate the problem of learning into two independent components:
design of the objective function (dataset size, regularization, loss etc) and optimization of
the chosen objective. This approach allows to consider optimization as a black box prob-
lem of its own although it hides the effect of a potential implicit regularization for certain
optimization methods [Lee et al., 2016]. Note however, that while Vapnik’s theory is
well verified for linear models, its prediction contradicts observations for deep learning
networks, where more parameters can lead to better generalization [Neyshabur et al.,
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2017, Nakkiran et al., 2019]. In this work, we nonetheless leave aside the problem of
generalization to focus mostly the problem of optimization, although it should be noted
that when each training example is used exactly once, most of the results we present
give a convergence bound on the true risk rather than its empirical approximation.
In order to minimize the empirical risk with respect to the model weights, a natural

approach is to use a gradient method. Starting from a certain point x0 ∈ Rd, we
iteratively compute the gradient of the risk with respect to the weights and update them
making a small step in the direction of the gradient, i.e., for an iteration n ∈ N and step
size γ > 0,

xn+1 = xn − γ∇F (x). (1.2)

This method, called Gradient Descent (GD), has been known for centuries [Cauchy,
1847], and in the case where the risk function is convex, its behavior is very well under-
stood and easy to prove [Bubeck et al., 2015]. In fact, this method is even today the
focus of research, as it allows for a simple setup to understand complex behaviors such
as the implicit regularization of gradient descent [Li et al., 2017] or the avoidance of
saddle points [Lee et al., 2016]. A first limitation of gradient methods, namely the com-
putation of the gradient for complex architectures, was lifted with the back-propagation
algorithm, formalized by Rumelhart et al. [1985], an application of the derivation chain
rule.
The second limitation is the cost of computing the gradient when the number M of

training samples is large. It also happens that for some applications, it is not possible
to have access to the entire training set at once. Instead, samples are provided one
by one and cannot (due to limited storage) or should not (legal requirements, change
of distribution over time) be reused, for instance for ads click prediction [McMahan
et al., 2013]. The setup of streaming examples is called online learning. For either large
datasets or online learning, an alternative to gradient descent is needed.

1.4.2. Stochastic gradient descent

Robbins and Monro [1951] contributed a Stochastic Approximation (SA) algorithm able
to find the root of a monotonic function from stochastic estimates. This algorithm was
then extended to the multivariate case by [Blum, 1954]. For a given function, finding
the root of its derivative is equivalent to finding a critical point. For convex functions,
this critical point can only be a global minimizer of the function.
While SA was initially developed purely as a statistical problem, its application to ma-

chine learning, and the task of minimizing the empirical risk (or equivalently maximizing
likelihood) were slowly uncovered [Ho, 1963, Kashyap and Blaydon, 1966]. Amari [1967]
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showed the soundness of SA for the training of perceptrons in an online learning setting,
even for non separable problems, although he makes no explicit mention of the Robbins-
Monroe algorithm. SA provides a clear theoretical grounding to the update rules of the
perceptron developed by [Rosenblatt, 1961], and initially inspired by the observation of
biological neurons. In particular the SA framework, along with backpropagation, allows
to extend those rules to any deep learning model architecture, loss function and training
data distribution [Bottou, 1991]. When applied to machine learning, the SA algorithm
is usually called Stochastic Gradient Descent (SGD). Let us define SGD formally when
applied to minimizing the function F given by (1.1). Starting from a point x0 ∈ Rd and
given step sizes γn > 0, we sample a training example jn+1 ∈ [M ] for all iterations n ∈ N
and update the parameters according to

xn+1 = xn − γ +n ∇fjn+1(xn). (1.3)

The increase in storage capacity, and therefore the growth of the size of training datasets,
gave a definite advantage to the stochastic approximation method the batch gradient
descent [Bottou and Le Cun, 2005]. Indeed, GD iteration cost grow linearly with the size
of the dataset while the iteration cost of SGD is independent of the number of training
samples. When further accounting for the fact that the empirical risk is not the true
metric we are interested in, but only an approximation, it is actually beneficial to be able
to optimize over a larger dataset even with a worse rate [Bottou and Bousquet, 2008].
Beyond deep learning, Bordes et al. [2005] showed that SGD could also outperform
classical optimizers for SVM, especially for large datasets.

Non asymptotic analysis Early work on SA/SGD mostly study the asymptotic be-
havior of stochastic optimization algorithms. The rate of convergence is known only
for a large number of iterations, but how large this number needs to be to reach the
asymptotic regime was unknown, i.e. one could not derive practical guarantees for the
convergence of SGD. Nemirovski et al. [2009] were the firsts to provide non-asymptotic
results when γn ∝ 1/n when the objective function is convex, with a better rate when
it is strictly convex, assuming that the stochastic gradients are uniformly bounded and
that F is smooth, i.e. its gradient ∇F is Liptchitz. The analysis was refined by Bach and
Moulines [2011], assuming only the smoothness of the gradients and that the variance
of the stochastic gradients is bounded by σ2. Alternatively, Lacoste-Julien et al. [2012]
obtained the same non asymptotic convergence rate for the strictly convex case with
bounded gradients but with a much shorter proof. Needell et al. [2014] studied the case
where γ is constant (which is often the case in practice) F is L-smooth and µ-strongly
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convex. In that case, there exist a single minimizer x∗ = arg minRd F , and as long as
γ ≤ L

2 , we have

‖xn − x∗‖22 ≤ (1− γµ)n ‖x0 − x∗‖22 + 2γσ2

µ
. (1.4)

While not strictly speaking convergent, using a large step size allows to quickly decay
the first term on the left hand side. Once this term is negligible, one can reduce γ to
achieve the desired sub-optimality. Non asymptotic bounds not only give strong practical
guarantees but also make apparent the different regimes: the exponential term in (1.4)
will initially be dominant when starting far from the optimum. Then, in the asymptotic
regime, the iterates xn will remain within a ball whose radius is proportional to the step
size. Optimizing only for the asymptotic regime would lead us to take a step size as small
as possible, but this would make the exponential term decay slower. Non asymptotic
analysis is key to understanding the trade-offs between the fast forgetting of the initial
condition and the asymptotic sub-optimality.
Using an optimal step size schedule, SGD converges to the optimum as O(1/n) when

F is µ-strongly convex and L-smooth, against O((1 − µ/L)n) for GD. When F is only
L-smooth, SGD converges as O(1/

√
n) while GD does so at a rate of O(1/n) (see [Bottou

et al., 2018] for SGD and [Bubeck et al., 2015] for GD). The rates of SGD are optimal
when one only has access to stochastic gradients and without further assumptions on F
than its smoothness [Agarwal et al., 2009].

Finite sum and variance reduction. The structure of F given by the empirical risk
minimization (1.1) is specific though: it is a finite sum of functions. This structure can
be leveraged in order to obtain much faster convergence in the convex case, matching
exactly those of GD but with the a computational cost just a few times that of SGD.
The first method that achieved those rates is SDCA [Shalev-Shwartz and Zhang, 2013],
which consist in a stochastic coordinate ascent in the dual: at each iteration, a train-
ing example is sampled and the associated dual parameter updated. However, SDCA
requires the optimization problem to have a dual formulation. In practice, this can be
achieved for linear models with `2 regularization. [Schmidt et al., 2017] introduced SAG,
the first primal gradient method that achieves the same rates as GD without requiring
the existence of a dual problem or `2 regularization. In particular, the algorithm con-
verges optimally whether the problem is strongly convex or not without any change.
Other methods were then discovered, such as SVRG [Johnson and Zhang, 2013], which
enjoys the same rate of convergence as SAG but with a significantly shorter proof but
requires the tuning of an extra hyper parameter. SAGA [Defazio et al., 2014] allows
to combine the simplicity of SVRG with the absence of extra hyper parameter of SAG.
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SAG, SVRG and SAGA are expressed in the primal formulation of the problem and
provide an intuitive explanation: for each training example, they store an old gradient
computed sometime in the past. When the example is sampled again, the old gradient is
replaced by the newly computed one. When the example is not sampled, the optimizer
uses the old gradient stored. Thus, at every iteration, all the examples contribute to the
update, either through a fresh or stored gradient. This can be implemented efficiently for
linear models as the stochastic gradient is colinear to the input vector and a single scalar
has to be stored per example. As the model gets closer to the optimum, one can show
that the average of the stored gradients gets closer to the true gradient, thus speeding
up convergence in a virtuous cycle. The use of the old gradients to estimate the true
total gradient ∇F (xn) allows to reduce the variance of the stochastic gradient estimates,
explaining why this approach is usually called variance reduction. While extremely use-
ful for solving convex problems that can be expressed as a finite sums, those methods do
not work well for non convex objective for two reasons. First the storage requirements
for non linear models explodes, as one must store d ×M values instead of M in the
linear case (or in the case of SVRG, store a second version of the model and perform two
evaluations of the gradient per iteration rather than one). Second, it has been observed
by Defazio and Bottou [2019] that the old gradient information becomes “outdated” too
quickly for deep neural network and do not actually improve convergence.

1.4.3. Adaptive optimization methods

A limitation of (S)GD is its dependency to the model parametrization. Instead of opti-
mizing F (x), we could have made a different choice and instead chose to optimize G(x̃)
with x̃ = λ−1x with λ ∈ R and G defined by G(x̃) = F (λx̃). When using (S)GD, opti-
mizing G with respect to x̃ is equivalent to the original optimization but with a step size
of λ2 times the original one. The squared dependency in λ tends to amplify bad choices
of scaling and requires choosing carefully both the step size and the parametrization
of the model. Using second order methods such as Newton’s method will alleviate the
issue, as they are invariant to any affine change of coordinates. However, second order
methods do not work well in the stochastic settings, as inaccuracies in the estimation
of the Hessian of the objective will lead to updates in arbitrarily bad directions [Bottou
et al., 2018].
Adaptive methods, such as Adagrad [Duchi et al., 2011], partially solves this problem.

Adagrad uses a per coordinate step size which depends on the scale of past gradients. If
we take a coordinate j ∈ [d] and iteration n ∈ N, we note xn,i the i-th coordinate of xn
and ∇i the derivative with respect to the i-th coordinate. Then, given a starting point
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x0 ∈ Rd and a global step size α > 0, the Adagrad update is given by

xn+1,i = xn,i − α
∇ifjn+1(xn)

ε+
√∑n

k=0
(
∇ifjk+1(xk)

)2 , (1.5)

with ε typically of the order of 10−10, introduced for numerical stability. Adagrad up-
dates are invariant to a global rescaling of the objective function, and doing a scalar
rescaling of the parameters λ as introduced in the previous paragraph is equivalent to
changing the step size by a factor λ. In fact, because they provide a step size per
coordinate, the property is still verified if λ is a diagonal rescaling. While adaptive
methods are not completely invariant to an affine rescaling, the impact of a diagonal
re-parametrization is not amplified like with SGD. Finally, the rate of convergence of
Adagrad matches that of SGD for non convex (see Chapter 5) and non strictly convex
problems, but does not require knowing the smoothness L of the objective function.
While Adagrad proved effective for sparse optimization [Duchi et al., 2013], or tensor

factorization [Lacroix et al., 2018], experiments showed that it under-performed when
applied to deep learning [Wilson et al., 2017]. With RMSProp, Tieleman and Hinton
[2012] proposed an exponential moving average instead of a cumulative sum of the past
squared gradients. Thus, if we assume that the scale of the stochastic gradients is
constant over some period of time, the effective learning rate would stabilize at a constant
value, while for Adagrad, it would decay as 1/

√
n. Kingma and Ba [2014] built upon

RMSProp and developed Adam, currently one of the most popular adaptive algorithms
in deep learning, by adding a corrective term to the step sizes at the beginning of
training, together with heavy-ball style momentum Polyak [1964]. In their original
paper, the authors showed with a decaying overall step size α, their algorithm converges
to a minimizer for convex objectives. However their proof is incorrect, as pointed out
by Reddi et al. [2019] who gave examples of convex problems where Adam does not
converge to an optimal solution. They proposed AMSGrad as a convergent variant
of Adam, which consisted in retaining the maximum value of the exponential moving
average. They prove the convergence of AMSGrad with a decaying α in the convex
settings. Other variants of Adam were developed, in particular AdamW [Loshchilov
and Hutter, 2019] that moves the contribution of the L2 regularization outside of the
adaptive update or NAdam which uses so called Nesterov style momentum instead of
heavy-ball Dozat [2016].

1.4.4. Non convex optimization

Convergence of SGD Notice that the early works on SA did not make any convexity
assumption. However, as explained in Section 1.4.2, this prevented the study of non
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asymptotic bounds, which gives practical guarantees. When F is convex and lower
bounded, one can take F∗ its infimum. In the convex setting, any critical point is a local
minimum and all local minima share the same value F∗. Therefore, it makes sense to
study convergence in the sense of F (xn)−F∗ going to zero. For strictly convex objective,
the infimum is reached in a single point x∗ and one can also bound ‖xn − x∗‖. With the
rising popularity of deep learning, results for the non convex setting regained interest.
However, it is not true that all local mimima share the same value, or that any critical
point is a local minima. Thus, one can only hope to show that SGD converges, in some
sense, to a critical point (remember that the original SA algorithm finds a root of a
function and that SGD is SA applied to the gradient of F ). Besides, we cannot show
that the last iterate is a critical point, as the algorithm could be on a plateau before
going downhill at any time. Instead, Ghadimi and Lan [2013] show that when taking a
random iterate index τ , with τ following the uniform distribution over {0, . . . , N − 1},
E
[
‖∇F (xτ )‖22

]
converges to zero as O(1/

√
N) when F is L-smooth and as long as γ ≤ 1

L .
This rate cannot be improved without further assumptions on F , as shown by Drori and
Shamir [2019].

Convergence of adaptive methods Li and Orabona [2019] first tackled the problem
of the convergence of Adagrad to a critical point in the non convex settings. However,
the bound they derived is only valid for values of α ≤ ε/L, which limits its practical
use. Ward et al. [2019] provided a novel proof framework for adaptive methods and
applied it to the scalar version of Adagrad, i.e. when a single learning is used for all
coordinates and the total squared norm of the gradients is aggregated. They show a
rate of convergence of O(ln(N)/

√
N), matching that of SGD for any value of α, but

unlike SGD, the proof requires for F to have bounded gradients. Zou et al. [2019b]
extended the proof to the diagonal learning rate and added support for either heavy-ball
or Nesterov style momentum in their proof. Chen et al. [2019] also present bounds for
Adagrad and Adam, without convergence guarantees for Adam.

We mentioned in Section 1.4.3 that Adam does not converge even with a decay-
ing overall step size α [Reddi et al., 2019]. However, Zou et al. [2019a] showed that
E
[
‖∇F (xτ )‖22

]
will be asymptotically bounded, with the bound depending on the char-

acteristic of the optimization problem and the hyper-parameters. In particular, for a
known total number of iterations N , one can chose the hyper-parameters of Adam to
match the convergence rate of Adagrad.
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1.4.5. Contributions

Contributions to sparse optimization One instance where Adagrad is particularly ef-
ficient is sparse optimization, i.e. when the stochastic gradient only has a few non zero
entries. It can be further combined with the Hogwild! parallel scheme Recht et al.
[2011], to provide a parallel optimizer that automatically adapts to the sparsity of the
data [Duchi et al., 2013]. In Chapter 4, we explain this behavior as we show that for
linear models, e.g. least-mean-square or logistic regression, and under mild assumptions,
one should use larger step sizes for rare features. With SGD, this is not possible if not
all features appear with the same frequency. Indeed, taking a large step size for rare
features would make the frequent features diverge. If a feature appear with probability
p, Adagrad will automatically use a per coordinate step size proportional to 1/√p. We
show that it is in fact possible to match the performance of the Adagrad optimizer with
a memory-less optimizer called Adabatch based on a simple idea: within one batch and
for each coordinate, instead of dividing the sum of gradients by the size of the batch,
divide it by the number of time the feature was active in the batch. In fact, one can see
this as an approximate second order methods, as we model the part of the Hessian that
depends on the frequency of each feature. What is interesting with Adabatch is that
unlike Newton methods, the pre-conditionner that is derived from the number of time
each feature is active is always stable and convergent, despite its stochasticity.

Contributions to non convex adaptive optimization In Chapter 5 we provide a uni-
fied proof covering both Adam and Adagrad in the non convex setting, assuming the
boundness of the gradients and the smoothness of the objective function. We discuss
the practicality of those assumptions. Indeed, boundness of the gradients is not veri-
fied by simple model such as linear least-mean-square nor a deep learning network. In
fact, a deep neural network is not uniformly smooth, as the local smoothness constant
with respect to one layer depends on the norm of the other layers. We show that for a
simple multi layer perceptron with sigmoid activations and L2 regularization, one can
show that the iterates of Adam/Adagrad will remain bounded, which allows to apply
our convergence results.
Our unified analysis further strengthen the connection between Adam and Adagrad,

with the simple idea that Adam is to Adagrad like constant step size SGD is to decaying
step size SGD. While not strictly speaking convergent for any hyper-parameter, Adam
can be made to converge with the same rate as Adagrad knowing only the time horizon
N . Besides, our bounds show that Adam moves away faster from its starting point x0

than Adagrad, explaining its practical success.
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Finally, our proof technique improves the tightness of the bound with respect to the
heavy ball parameter. Remember that heavy-ball momentum consists in keeping an
exponential moving average of the past gradients

mn+1 = (1− β1)mn + β1fjn+1(xn), (1.6)

and using it to update x instead of the last stochastic gradient. The case without
momentum corresponds to β1 = 0. There is currently no theoretical proof that mo-
mentum helps, be it for adaptive methods or regular SGD [Yang et al., 2016]. The
bounds always get worse as β1 increases: for SGD and Adagrad, the best dependency is
O((1−β1)−3) [Zou et al., 2019b, Yang et al., 2016] and for Adam it is O(1−β1)−5) [Zou
et al., 2019a]. We provide a tighter proof for Adam and Adagrad with a dependency
in O((1− β1)−1). Our proof technique can also be used with SGD to achieve the same
dependency.

1.4.6. Conclusion

Stochastic optimization is the steam engine that makes deep learning models progress
from their random initialization to a high level of accuracy. The use of stochastic es-
timates of the gradients allows to scale training to large training sets, which is more
important than achieving a faster rate of convergence on a smaller dataset. The number
of parameters of deep learning models rules out the use of exact second order methods.
Even approximate second order methods cannot be used because they are not stable
when using stochastic gradients. This explains the popularity of SGD for training deep
learning models. Another important aspect is the robustness to the choice of the hyper-
parameters, the step size in particular. Adaptive methods like Adagrad or Adam achieves
the same rate of convergence as SGD without having to know the smoothness constant
of the objective function. They are also less sensitive to a diagonal re-parametrization of
the problem, thus obtaining part of the benefit from second order methods at a fraction
of their computational cost and still working well in a stochastic settings.
We presented two novel contributions. First, a simple gradient aggregation rule for

sparse optimization called Adabatch, which achieves faster convergence when using large
batch sizes by performing a reconditioning based on the sparsity of each feature within a
batch. Unlike generic second order method, this reconditioning is stable in the stochastic
settings and allows to match the performance of adaptive methods such as Adagrad.
Second, we provide a unified proof for Adam and Adagrad for non convex optimization,
with a tightened dependency in the momentum parameter.
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1.5. Summary of contributions

• In Chapter 2, we introduce SING, a universal instrument synthesizer capable of
producing notes from 1,000 instruments using an architecture based on a recurrent
layer followed by transposed convolutions. The model outputs directly a waveform
and is optimized with a loss over the log-amplitude spectrograms. SING is able
to generate 16 kHz audio at 8.2 MHz on GPU, and 188 kHz on CPU, i.e. 10
times faster than real time, while improving the state-of-the-art as measured by
subjective scores.

• In Chapter 3, we turn to the task of music source separation with Demucs, the
first waveform domain model to match the performance of spectrogram based
models, while surpassing it for drums and bass lines. Demucs consist in a U-Net
auto-encoder, using convolutions followed by a recurrent layer, and transposed
convolutions to output the final audio. It is capable of separating a stereophonic
song sampled at 44.1 kHz in about the same time as the duration of the track on
a laptop CPU.

• We then turn to AdaBatch in Chapter 4, a simple aggregation rule for gradients in
a mini-batch that improves the condition number of a sparse convex optimization
problem. It allows to increase the batch size without slowing down convergence.
Larger batch sizes are important for efficient parallel computing and our method
allows to match state-of-the-art performance for parallel sparse optimization with-
out requiring extra memory storage.

• Finally, we provide in Chapter 5 convergence bounds for the adaptive Adagrad
and Adam optimizers when applied to non convex problems, with a unified proof
technique. We show that for a given number of iterations, the hyper-parameters of
Adam can be chosen to match the convergence of Adagrad. Our proof technique
improves the tightness of the bound when using heavy-ball momentum, although
the improvement is not sufficient to show a theoretical gain with momentum.
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2. SING: deep neural generator for music
notes

Abstract

Recent progress in deep learning for audio synthesis opens the way to models that
directly produce the waveform, shifting away from the traditional paradigm of relying on
vocoders or MIDI synthesizers for speech or music generation. Despite their successes,
current state-of-the-art neural audio synthesizers such as WaveNet and SampleRNN
Oord et al. [2016], Mehri et al. [2016] suffer from prohibitive training and inference
times because they are based on autoregressive models that generate audio samples one
at a time at a rate of 16kHz. In this work, we study the more computationally efficient
alternative of generating the waveform frame-by-frame with large strides. We present
SING, a lightweight neural audio synthesizer for the original task of generating musical
notes given desired instrument, pitch and velocity. Our model is trained end-to-end to
generate notes from nearly 1000 instruments with a single decoder, thanks to a new loss
function that minimizes the distances between the log spectrograms of the generated and
target waveforms. On the generalization task of synthesizing notes for pairs of pitch and
instrument not seen during training, SING produces audio with significantly improved
perceptual quality compared to a state-of-the-art autoencoder based on WaveNet Engel
et al. [2017] as measured by a Mean Opinion Score (MOS), and is about 32 times faster
for training and 2, 500 times faster for inference.

2.1. Introduction

The recent progress in deep learning for sequence generation has led to the emergence
of audio synthesis systems that directly generate the waveform, reaching state-of-the-art
perceptual quality in speech synthesis, and promising results for music generation. This
represents a shift of paradigm with respect to approaches that generate sequences of pa-
rameters to vocoders in text-to-speech systems Sotelo et al. [2017], Taigman et al. [2017],
Ping et al. [2018], or MIDI partition in music generation Hadjeres et al. [2016], Ebcioğlu
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[1988], Herremans and Chew [2016]. A commonality between the state-of-the-art neural
audio synthesis models is the use of discretized sample values, so that an audio sample
is predicted as a categorical distribution conditionned over past samples, trained with a
cross-entropy loss Oord et al. [2016], Mehri et al. [2016], Oord et al. [2017], Kalchbrenner
et al. [2018]. Another significant commonality is the use of autoregressive models that
generate samples one-by-one, which leads to prohibitive training and inference times
Oord et al. [2016], Mehri et al. [2016], or requires specialized implementations and low-
level code optimizations to run in real time Kalchbrenner et al. [2018]. An exception is
parallel WaveNet Oord et al. [2017] which generates a sequence with a fully convolutional
network for faster inference. However, the parallel approach is trained to reproduce the
output of a standard WaveNet, which means that faster inference comes at the cost of
increased training time.
In this chapter, we study an alternative to both the modeling of audio samples as a

categorical distribution and the autoregressive approach. We propose to generate the
waveform for entire audio frames of 1024 samples at a time with a large stride, and
model audio samples as continuous values. We develop and evaluate this method on
the challenging task of generating musical notes based on the desired instrument, pitch,
and velocity, using the large-scale NSynth dataset Engel et al. [2017]. We obtain a
lightweight synthesizer of musical notes composed of a 3-layer RNN with LSTM cells
Hochreiter and Schmidhuber [1997] that produces embeddings of audio frames given the
desired instrument, pitch, velocity1 and time index. These embeddings are decoded by a
single four-layer convolutional network to generate notes from nearly 1000 instruments,
65 pitches per instrument on average and 5 velocities.

The successful end-to-end training of the synthesizer relies on two ingredients:

• A new loss function which we call the spectral loss, which computes the 1-norm
between the log power spectrograms of the waveform generated by the model and
the target waveform, where the power spectrograms are obtained by the short-time
Fourier transform (STFT).

Log power spectrograms are interesting both because they are related to human
perception Goldstein [1967], but more importantly because the entire loss is in-
variant to the original phase of the signal, which can be arbitrary without audible
differences.

• Initialization with a pre-trained autoencoder: a purely convolutional autoencoder
1Quoting Engel et al. [2017]: "MIDI velocity is similar to volume control and they have a direct
relationship. For physical intuition, higher velocity corresponds to pressing a piano key harder."
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architecture on raw waveforms is first trained with the spectral loss. The LSTM
is then initialized to reproduce the embeddings given by the encoder, using mean
squared error. After initialization, the LSTM and the decoder are fine-tuned to-
gether, backpropagating through the spectral loss.

We evaluate our synthesizer on a new task of pitch completion: generating notes for
pitches not seen during training. We perform perceptual experiments with human eval-
uators to aggregate a Mean Opinion Score (MOS) that characterizes the naturalness
and appeal of the generated sounds. We also perform ABX tests to measure the relative
similarity of the synthesizer’s ability to effectively produce a new pitch for a given instru-
ment, see Section 2.5.3. We use a state-of-the-art autoencoder of musical notes based on
WaveNet Engel et al. [2017] as a baseline neural audio synthesis system. Our synthesizer
achieves higher perceptual quality than Wavenet-based autoencoder in terms of MOS
and similarity to the ground-truth while being about 32 times faster during training and
2, 500 times for generation.

2.2. Related Work

A large body of work in machine learning for audio synthesis focuses on generating
parameters for vocoders in speech processing Sotelo et al. [2017], Taigman et al. [2017],
Ping et al. [2018] or musical instrument synthesizers in automatic music composition
Hadjeres et al. [2016], Ebcioğlu [1988], Herremans and Chew [2016]. Our goal is to learn
the synthesizers for musical instruments, so we focus here on methods that generate
sound without calling such synthesizers.
A first type of approaches model power spectrograms given by the STFT Engel et al.

[2017], Haque et al. [2018], Wang et al. [2017], and generate the waveform through a
post-processing that is not part of the training using a phase reconstruction algorithm
such as the Griffin-Lim algorithm Griffin and Lim [1984]. The advantage is to focus on
a distance between high-level representations that is more relevant perceptually than a
regression on the waveform. However, using Griffin-Lim means that the training is not
end to end. Indeed the predicted spectrograms may not come from a real signal. In that
case, Griffin-Lim performs an orthogonal projection onto the set of valid spectrograms
that is not accounted for during training. Notice that our approach with the spectral
loss is different: our models directly predict waveforms rather than spectrograms and
the spectral loss computes log power spectrograms of these predicted waveforms.
The current state-of-the-art in neural audio synthesis is to generate directly the wave-

form Oord et al. [2016], Mehri et al. [2016], Ping et al. [2018]. Individual audio samples
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are modeled with a categorical distribution trained with a multiclass cross-entropy loss.
Quantization of the 16 bit audio is performed (either linear Mehri et al. [2016] or with
a µ-law companding Oord et al. [2016]) to map to a few hundred bins to improve scal-
ability. The generation is still extremely costly; distillation Hinton et al. [2015] to a
faster model has been proposed to reduce inference time at the expense of an even larger
training time Oord et al. [2017]. The recent proposal of Kalchbrenner et al. [2018] partly
solves the issue with a small loss in accuracy, but it requires heavy low-level code opti-
mization. In contrast, our approach trains and generate waveforms comparably fast with
a PyTorch2 implementation. Our approach is different since we model the waveform as a
continuous signal and use the spectral loss between generated and target waveforms and
model audio frames of 1024 samples, rather than performing classification on individual
samples. The spectral loss we introduce is also different from the power loss regulariza-
tion of Oord et al. [2017], even though both are based on the STFT of the generated
and target waveforms. In Oord et al. [2017], the primary loss is the classification of
individual samples, and their power loss is used to equalize the average amplitude of
frequencies over time. Thus the power loss cannot be used alone to learn to reconstruct
the waveform.

Works on neural audio synthesis conditioned on symbolic inputs were developed mostly
for text-to-speech synthesis Oord et al. [2016], Mehri et al. [2016], Wang et al. [2017].
Experiments on generation of musical tracks based on desired properties were described
in Oord et al. [2016], but no systematic evaluation has been published. The model
of Engel et al. [2017], which we use as baseline in our experiments on perceptual quality,
is an autoencoder of musical notes based on WaveNet Oord et al. [2016] that compresses
the signal to generate high-level representations that transfer to music classification
tasks, but contrarily to our synthesizer, it cannot be used to generate waveforms from
desired properties of the instrument, pitch and velocity without some input signal.

The minimization by gradient descent of an objective function based on the power
spectrogram has already been applied to the transformation of a white noise waveform
into a specific sound texture Caracalla and Roebel [2017]. However, to the best of our
knowledge, such objective functions have not been used in the context of neural audio
synthesis.

2https://pytorch.org/
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2.3. The spectral loss for waveform synthesis

Previous work in audio synthesis on the waveform focused on classification losses Mehri
et al. [2016], Oord et al. [2016], Engel et al. [2017]. However, their computational cost
needs to be mitigated by quantization, which inherently limits the resolution of the
predictions. Ultimately, increasing the number of classes is likely necessary to achieve
optimal accuracy. Our approach directly predicts a single continuous value for each audio
sample and computes distances between waveforms in the domain of power spectra to be
invariant to the original phase of the signal. As a baseline, we also consider computing
distances between waveforms using plain mean square error (MSE).

2.3.1. Mean square regression on the waveform

The simplest way of measuring the distance between a reconstructed signal x̂ and the
reference x is to compute the MSE on the waveform directly, that is taking the Euclidean
norm between x and x̂,

Lwav (x, x̂) := ‖x− x̂‖2 . (2.1)

The MSE is not a good perceptual distance between waveforms; for instance, it is ex-
tremely sensitive to small shifts in the signal.

2.3.2. Spectral loss

As an alternative to the MSE on the waveform, we suggest taking the Short Term Fourier
Transform (STFT) of both x and x̂ and comparing their power spectrum in log scale:

l(x) := log
(
ε+ |STFT [x]|2

)
. (2.2)

We use a STFT that decomposes the original signal x in successive frames of 1024 time
steps with a stride of 256, so that there is 75% overlap between two successive frames.
The output for a single frame is 513 complex numbers, each representing a specific
frequency range. Taking the point-wise squareds modulus of those numbers represents
how much energy is present in a specific frequency range. We observed that our models
generated higher quality sounds when trained using a log scale of those coefficients.
Previous work has come to the same conclusion Engel et al. [2017]. We observed that
many entries of the spectrograms are close to zero and that small errors on those parts
can add up to form noisy artifacts. In order to favor sparsity in the spectrogram, we use
the ‖·‖1 norm instead of the MSE,

Lstft,1 (x, x̂) := ‖l(x)− l(x̂)‖1 . (2.3)
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The value of ε controls the trade-off between accurately representing low energy and high
energy coefficients in the spectrogram. We found that ε = 1 gave the best subjective
reconstruction quality, using an unormalized STFT with a Hann window (maximum
value to 1), for the NSynth dataset presented in Section 2.5.1.
The STFT is a (complex) convolution operator on the waveform and the squared

absolute value of the Fourier coefficients makes the power spectrum differentiable with
respect to the generated waveform. Since the generated waveform is itself a differentiable
function of the parameters (up to the non-differentiability points of activation functions
such as ReLU), the spectral loss (2.3) can be minimized by standard backpropagation.
Even though we only consider this spectral loss in our experiments, alternatives to the
STFT such as the Wavelet transform also define a differentiable loss.

Non unicity of the waveform representation

To illustrate the importance of the spectral loss instead of a waveform loss, let us consider
a problem that arises when generating notes in the test set. Let us assume that one of
the instrument is a pure sinusoid. For a given pitch at a frequency f , the audio signal
is xi = sin(2πi f

16000 + φ). Our perception of the signal is not affected by the choice of
φ ∈ [0, 2π[, and the spectrogram of x is mostly unaltered. When recording an acoustic
instrument, the value of φ depends on any number of variables characterizing the physical
system that generated the sound and there is no guarantee that φ stays constant when
playing the same note again. For a synthetic sound, φ also depends on implementation
details of the software generating the sound.
For a sound that is not in the training set and as far as the model is concerned, φ

is a random variable that can take any value in the range [0, 2π[. As a result, x0 is
unpredictable in the range [−1, 1], and the mean square error between the generated
signal and the ground truth is uninformative. Even on the training dataset, the model
has to use extra resources to remember the value of φ for each pitch. We believe that this
phenomenon is the reason why training the synthesizer using the MSE on the waveform
leads to worse reconstruction performance, even though this loss is sufficient in the
context of auto-encoding (see Section 2.5.2). The spectral loss solves this issue since the
model is free to choose a single canonical value for φ.

However, one should note that the spectral loss is permissive. For instance for sta-
tionary sounds, we observe "restarts" where the audio cancels out before restarting with
a different initial phase. Another example is given by the artifacts introduced by the
strided transposed convolutions. Both of them have a small loss, as they are either very
localized in time or frequency, but have clearly audible effects. In practice, we obtain

46



h0 := 0

(uV , vI , wP , z1)

s1(V IP )

(uV , vI , wP , z2)

h1

s2(V IP )

(uV , vI , wP , z3)

h2

s3(V IP )

· · ·

(uV , vI , wP , z265)

h259

s265(V IP )

Convolution K = 9, S = 1, C = 4096, ReLU

Convolution K = 1, S = 1, C = 4096, ReLU

Convolution K = 1, S = 1, C = 4096, ReLU

Conv transpose K = 1024, S = 256, C = 1

Output waveform STFT + log-power

Spectral loss

Figure 2.1.: Summary of the entire architecture of SING. uV , vI , wP , z∗ represent the
look-up tables respectively for the velocity, instrument, pitch and time. h∗
represent the hidden state of the LSTM and s∗ its output. For convolutional
layers, K represents the kernel size, S the stride and C the number of
channels.

state-of-the-art results (see Section 2.5), but both issues should be resolved to achieve
even higher quality.

2.4. Model

In this section we introduce the SING architecture. It is composed of two parts: a LSTM
based sequence generator whose output is plugged to a decoder that transforms it into a
waveform. The model is trained to recover a waveform x sampled at 16,000 Hz from the
training set based on the one-hot encoded instrument I, pitch P and velocity V . The
whole architecture is summarized in Figure 2.1.

2.4.1. LSTM sequence generator

The sequence generator is composed of a 3-layer recurrent neural network with LSTM
cells and 1024 hidden units each. Given an example with velocity V , instrument I and
pitch P , we obtain 3 embeddings (uV , vI , wP ) ∈ R2×R16×R8 from look-up tables that are
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trained along with the model. Furthermore, the model is provided at each time step with
an extra embedding zT ∈ R4 where T is the current time step Sukhbaatar et al. [2015],
Gehring et al. [2017], also obtained from a look-up table that is trained jointly. The input
of the LSTM is the concatenation of those four vectors (uV , vI , wP , zT ). Although we first
experimented with an autoregressive model where the previous output was concatenated
with those embeddings, we achieved much better performance and faster training by
feeding the LSTM with only on the 4 vectors (uV , vI , wP , zT ) at each time step. Given
those inputs, the recurrent network generates a sequence ∀1 ≤ T ≤ N, s(V, I, P )T ∈ RD

with a linear layer on top of the last hidden state. In our experiments, we have D = 128
and N = 265.

2.4.2. Convolutional decoder

The sequence s(V, I, P ) is decoded into a waveform by a convolutional network. The first
layer is a convolution with a kernel size of 9 and a stride of 1 over the sequence s with
4096 channels followed by a ReLU. The second and third layers are both convolutions
with a kernel size of 1 (a.k.a. 1x1 convolution Engel et al. [2017]) also followed by a
ReLU. The number of channels is kept at 4096. Finally the last layer is a transposed
convolution with a stride of 256 and a kernel size of 1024 that directly outputs the final
waveform corresponding to an audio frame of size 1024. In order to reduce artifacts
generated by the high stride value, we smooth the deconvolution filters by multiplying
them with a squared Hann window. As the stride is one fourth of the kernel size, the
squared Hann window has the property that the sum of its values for a given output
position is always equal to 1 Griffin and Lim [1984]. Thus the final deconvolution can
also be seen as an overlap-add method. We pad the examples so that the final generated
audio signal has the right length. Given our parameters, we need s(V, I, P ) to be of
length N = 265 to recover a 4 seconds signal d(s(V, I, P )) ∈ R64,000.

2.4.3. Training details

All the models are trained on 4 P100 GPUs using Adam Kingma and Ba [2014] with a
learning rate of 0.0003 and a batch size of 256.

Initialization with an autoencoder. We introduce an encoder turning a waveform x

into a sequence e(x) ∈ RN×D. This encoder is almost the mirror of the decoder. It starts
with a convolution layer with a kernel size of 1024, a stride of 256 and 4096 channels
followed by a ReLU. Similarly to the decoder, we smooth its filters using a squared Hann
window. Next are two 1x1 convolutions with 4096 channels and ReLU as an activation
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function. A final 1x1 convolution with no non linearity turns those 4096 channels into
the desired sequence with D channels. We first train the encoder and decoder together
as an auto-encoder on a reconstruction task. We train the auto-encoder for 50 epochs
which takes about 12 hours on 4 GPUs.

LSTM training. Once the auto-encoder has converged, we use the encoder to generate
a target sequence for the LSTM. We use the MSE between the output s(V, I, P ) of the
LSTM and the output e(x) of the encoder, only optimizing the LSTM while keeping the
encoder constant. The LSTM is trained for 50 epochs using truncated backpropagation
through time Williams and Zipser [1995] using a sequence length of 32. This takes about
10 hours on 4 GPUs.

End-to-end fine tuning. We then plug the decoder on top of the LSTM and fine
tune them together in an end-to-end fashion, directly optimizing for the loss on the
waveform, either using the MSE on the waveform or computing the MSE on the log-
amplitude spectrograms and back propagating through the STFT. At that point we stop
using truncated back propagation through time and directly compute the gradient on
the entire sequence. We do so for 20 epochs which takes about 8 hours on 4 GPUs.
From start to finish, SING takes about 30 hours on 4 GPUs to train.
Although we could have initialized our LSTM and decoder randomly and trained end-

to-end, we did not achieve convergence until we implemented our initialization strategy.

2.5. Experiments

The source code for SING and a pretrained model are available on our github3. Audio
samples are available on the article webpage4.

2.5.1. NSynth dataset

The train set from the NSynth dataset Engel et al. [2017] is composed of 289,205 au-
dio recordings of instruments, some synthetic and some acoustic. Each recording is 4
second long at 16,000 Hz and is represented by a vector xV,I,P ∈ [−1, 1]64,000 indexed
by V ∈ {0, 4} representing the velocity of the note, I ∈ {0, . . . , 1005} representing the
instrument, P ∈ {0, . . . , 120} representing the pitch. The range of pitches available can

3https://github.com/facebookresearch/SING
4https://research.fb.com/publications/sing-symbol-to-instrument-neural-generator
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vary depending on the instrument but for any combination of V, I, P , there is at most a
single recording.
We did not make use of the validation or test set from the original NSynth dataset

because the instruments had no overlap with the training set. Because we use a look-up
table for the instrument embedding, we cannot generate audio for unseen instruments.
Instead, we selected for each instrument 10% of the pitches randomly that we moved to a
separate test set. Because the pitches are different for each instrument, our model trains
on all pitches but not on all combinations of a pitch and an instrument. We can then
evaluate the ability of our model to generalize to unseen combinations of instrument and
pitch. In the rest of the chapter, we refer to this new split of the original train set as
the train and test set.

2.5.2. Generalization through pitch completion

We report our results in Table 2.1. We provided both the performance of the complete
model as well as that of the autoencoder used for the initial training of SING. This
autoencoder serves as a reference for the maximum quality the model can achieve if the
LSTM were to reconstruct perfectly the sequence e(x).
Although using the MSE on the waveform works well as far as the autoencoder is

concerned, this loss is hard to optimize for the LSTM. Indeed, the autoencoder has
access to the signal it must reconstruct, so that it can easily choose which representation
of the signal to output as explained in Section 2.3.2. SING must be able to recover that
information solely from the embeddings given to it as input. It manages to learn some
of it but there is an important drop in quality. Besides, when switching to the test set
one can see that the MSE on the waveform increases significantly. As the model has
never seen those examples, it has no way of picking the right representation. When using
a spectral loss, SING is free to choose a canonical representation for the signal it has
to reconstruct and it does not have to remember the one that was in the training set.
We observe that although we have a drop in quality between the train and test set, our
model is still able to generalize to unseen combinations of pitch and instrument.
Finally, we tried training a model without the time embedding zT . Theoretically,

the LSTM could do without it by learning to count the number of time steps since the
beginning of the sequence. However we do observe a significant drop in performance
when removing this embedding, thus motivating our choice.
On Figure 2.2, we represented the rainbowgrams for a particular example from the

test set as well as its reconstruction by the Wavenet-autoencoder, SING trained with
the spectral and waveform loss and SING without time embedding. Rainbowgrams are
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Spectral loss Wav MSE

Model Training loss train test train test

Autoencoder waveform 0.026 0.028 0.0002 0.0003
SING waveform 0.075 0.084 0.006 0.039

Autoencoder spectral 0.028 0.032 N/A N/A
SING spectral 0.039 0.051 N/A N/A
SING no time emb. spectral 0.050 0.063 N/A N/A

Table 2.1.: Results on the train and test set of the pitch completion task for different
models. The first column specifies the model, either the autoencoder used
for the initial training of the LSTM or the complete SING model with the
LSTM and the convolutional decoder. We compare models either trained
with a loss on the waveform (see (2.1)) or on the spectrograms (see (2.3)).
Finally we also trained a model with no temporal embedding.

defined in Engel et al. [2017] as “a CQT spectrogram with intensity of lines proportional
to the log magnitude of the power spectrum and color given by the derivative of the
phase”. A different derivative of the phase will lead to audible deformations of the
target signal. Such modification are not penalized by our spectral loss as explained in
Section 2.3.2. Nevertheless, we observe a mostly correct reconstruction of the derivative
of the phase using SING. More examples from the test set, including the rainbowgrams
and audio files are available on the article webpage5.

2.5.3. Human evaluations

During training, we use several automatic criteria to evaluate and select our models.
These criteria include the MSE on spectrograms, magnitude spectra, or waveform, and
other perceptually-motivated metrics such as the Itakura-Saito divergence Itakura [1968].
However, the correlation of these metrics with human perception remains imperfect,
this is why we use human judgments as a metric of comparison between SING and the
Wavenet baseline from Engel et al. [2017].

5https://research.fb.com/publications/sing-symbol-to-instrument-neural-generator
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Figure 2.2.: Example of rainbowgrams from the NSynth dataset and the reconstructions
by different models. Rainbowgrams are defined in Engel et al. [2017] as “a
CQT spectrogram with intensity of lines proportional to the log magnitude
of the power spectrum and color given by the derivative of the phase”. Time
is represented on the horizontal axis while frequencies are on the vertical
one. From left to right: ground truth, Wavenet-based autoencoder, SING
with spectral loss, SING with waveform loss and SING without the time
embedding.

Evaluation of perceptual quality: Mean Opinion Score

The first characteristic that we want to measure from our generated samples is their
naturalness: how good they sound to the human ear. To do so, we perform experiments
on Amazon Mechanical Turk Buhrmester et al. [2011] to get a Mean Opinion Score for
the ground truth samples, and for the waveforms generated by SING and the Wavenet
baseline. We did not include a Griffin-Lim based baseline as the authors in Engel et al.
[2017] concluded to the superiority of their Wavenet autoencoder.
We randomly select 100 examples from our test set. For the Wavenet-autoencoder,

we pass these 100 examples through the network and retrieve the output. The latter is
a pre-trained model provided by the authors of Engel et al. [2017]6. Notice that all of
the 100 samples were used for training of the Wavenet-autoencoder, while they were not
seen during the training of our models. For SING, we feed it the instrument, pitch and
velocity information of each of the 100 samples. Workers are asked to rate the quality
of the samples on a scale from 1 ("Very annoying and objectionable distortion. Totally
silent audio") to 5 ("Imperceptible distortion"). Each of the 300 samples (100 samples
per model) is evaluated by 60 Workers. The quality of the hardware used by Workers
being variable, this could impede the interpretability of the results. Thus, we use the
crowdMOS toolkit Ribeiro et al. [2011] which detects and discards inaccurate scores.
This toolkit also allows to only keep the evaluations that are made with headphones
(rather than laptop speakers for example), and we choose to do so as good listening

6https://github.com/tensorflow/magenta/tree/master/magenta/models/nsynth
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conditions are necessary to ensure the validity of our measures. We report the Mean
Opinion Score for the ground-truth audio and each of the 2 models in Table 2.2, along
with the 95% confidence interval.

We observe that SING shows a significantly better MOS than theWavenet-autoencoder
baseline despite a compression factor which is 66 times higher. Moreover, to spotlight
the benefits of our approach compared to the Wavenet baseline, we also report three
metrics to quantify the computational load of the different models. The first metric is
the training time, expressed in hours multiplied by the number of GPUs. The authors
of Engel et al. [2017], mention that their model trains for 10 days on 32 GPUs, which
amounts to 7680 hours*GPUs. However, the GPUs used are capable of about half the
FLOPs compared to our P100. Therefore, we corrected this value to 3840 hours*GPUs.
On the other hand, SING is trained in 30 hours on four P100, which is 32 times faster
than Wavenet. A major drawback of autoregressive models such as Wavenet is that the
generation process is inherently sequential: generating the sample at time t + 1 takes
as input the sample at time t. We timed the generation using the implementation of
the Wavenet-autoencoder provided by the authors, in its fastgen version7 which is sig-
nificantly faster than the original model. This yields a 22 minutes time to generate a
4-second sample. On a single P100 GPU, Wavenet can generate up to 64 sequences at
the same time before reaching the memory limit, which amounts to 0.2 seconds of audio
generated per second. On the other hand, SING can generate 512 seconds of audio per
second of processing time, and is thus 2500 times faster than Wavenet. Finally, SING is
also efficient in memory compared to Wavenet, as the model size in MB is more than 4
times smaller than the baseline.

ABX similarity measure

Besides absolute audio quality of the samples, we also want to ensure that when we
condition SING on a chosen combination of instrument, pitch and velocity, we generate
a relevant audio sample. To do so, we measure how close samples generated by SING
are to the ground-truth relatively to the Wavenet baseline. This measure is made by
performing ABX Macmillan and Creelman [2004] experiments: the Worker is given a
ground-truth sample as a reference. Then, they are presented with the corresponding
samples of SING and Wavenet, in a random order to avoid bias and with the possibility
of listening as many times to the samples as necessary. They are asked to pick the
sample which is the closest to the reference according to their judgment. We perform
this experiment on 100 ABX triplets made from the same data as for the MOS, each

7https://magenta.tensorflow.org/nsynth-fastgen
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Model MOS Training time Generation speed Compression factor Model size

Ground Truth 3.86 ± 0.24 - - - -

Wavenet 2.85 ± 0.24 3840∗ GPU hours 0.2 sec/sec 32 948 MB
SING 3.55 ± 0.23 120 GPU hours 512 sec/sec 2133 243 MB

Table 2.2.: Mean Opinion Score (MOS) and computational load of the different models.
The training time is expressed in hours * GPU units, the generation time is
expressed as the number of seconds of audio that can be generated per second
of processing time. The compression factor represents the ratio between the
dimensionality of the audio sequences (64, 000 values) and either the latent
state of Wavenet or the input vectors to SING. We also report the size of the
models, in MB.
(∗) Time corrected to account for the difference in FLOPs of the GPUs used.

triplet being evaluated by 10 Workers. On average over 1000 ABX tests, 69.7% are in
favor of SING over Wavenet, which shows a higher similarity between our generated
samples and the target musical notes than Wavenet.

2.6. Conclusion

We introduced a simple model architecture, SING, based on LSTM and convolutional
layers to generate waveforms. We achieve state-of-the-art results as measured by human
evaluation on the NSynth dataset for a fraction of the training and generation cost of
existing methods. We introduced a spectral loss on the generated waveform as a way of
using time-frequency based metrics without requiring a post-processing step to recover
the phase of a power spectrogram. We experimentally validated that SING was able to
embed music notes into a small dimension vector space where the pitch, instrument and
velocity were disentangled when trained with this spectral loss, as well as synthesizing
pairs of instruments and pitches that were not present in the training set. We believe
SING opens up new opportunities for lightweight quality audio synthesis with potential
applications for speech synthesis and music generation.
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3. Demucs: music source separation in the
waveform domain

Abstract

Source separation for music is the task of isolating contributions, or stems, from different
instruments recorded individually and arranged together to form a song. Such compo-
nents include voice, bass, drums and any other accompaniments. Contrarily to many
audio synthesis tasks where the best performances are achieved by models that directly
generate the waveform, the state-of-the-art in source separation for music is to compute
masks on the magnitude spectrum. In this chapter, we first show that an adaptation
of Conv-Tasnet [Luo and Mesgarani, 2019], a waveform-to-waveform model for source
separation for speech, significantly beats the state-of-the-art on the MusDB dataset, the
standard benchmark of multi-instrument source separation. Second, we observe that
Conv-Tasnet follows a masking approach on the input signal, which has the potential
drawback of removing parts of the relevant source without the capacity to reconstruct
it. We propose Demucs, a new waveform-to-waveform model, which has an architecture
closer to models for audio generation with more capacity on the decoder. Experiments
on the MusDB dataset show that Demucs beats previously reported results in terms
of signal to distortion ratio (SDR), but lower than Conv-Tasnet. Human evaluations
show that Demucs has significantly higher quality (as assessed by mean opinion score)
than Conv-Tasnet, but slightly more contamination from other sources, which explains
the difference in SDR. Additional experiments with a larger dataset suggest that the
gap in SDR between Demucs and Conv-Tasnet shrinks, showing that our approach is
promising.

3.1. Introduction

Cherry first noticed the “cocktail party effect” [Cherry, 1953]: how the human brain is
able to separate a single conversation out of a surrounding noise from a room full of
people chatting. Bregman later tried to understand how the brain was able to analyse

55



a complex auditory signal and segment it into higher level streams. His framework for
auditory scene analysis [Bregman, 1990] spawned its computational counterpart, trying
to reproduce or model accomplishments of the brains with algorithmic means [Wang and
Brown, 2006], in particular regarding source separation capabilities.

When producing music, recordings of individual instruments called stems are arranged
together and mastered into the final song. The goal of source separation is to recover
those individual stems from the mixed signal. Unlike the cocktail party problem, there
is not a single source of interest to differentiate from an unrelated background noise, but
instead a wide variety of tones and timbres playing in a coordinated way. In the SiSec
Mus evaluation campaign for music separation [Stöter et al., 2018], those individual
stems were grouped into 4 broad categories: (1) drums, (2) bass, (3) other, (4) vocals.
Given a music track which is a mixture of these four sources, also called the mix, the
goal is to generate four waveforms that correspond to each of the original sources. We
consider here the case of supervised source separation, where the training data contain
music tracks (i.e., mixtures), together with the ground truth waveform for each of the
sources.

State-of-the-art approaches in music source separation still operate on the spectro-
grams generated by the short-time Fourier transform (STFT). They produce a mask
on the magnitude spectrums for each frame and each source, and the output audio is
generated by running an inverse STFT on the masked spectrograms reusing the input
mixture phase [Takahashi and Mitsufuji, 2017, Takahashi et al., 2018]. Several architec-
tures trained end-to-end to directly synthesize the waveforms have been proposed [Lluís
et al., 2018, Stoller et al., 2018], but their performances are far below the state-of-the-
art: in the last SiSec Mus evaluation campaign [Stöter et al., 2018], the best model that
directly predicts waveforms achieves an average signal-to-noise ratio (SDR) over all four
sources of 3.2, against 5.3 for the best approach that predicts spectrograms masks (also
see Table 3.1 in Section 3.6). An upper bound on the performance of all methods relying
on masking spectrograms is given by the SDR obtained when using a mask computed
using the ground truth sources spectrograms, for instance the Ideal Ratio Mask (IRM) or
the Ideal Binary Mask (IBM) oracles. For speech source separation, Luo and Mesgarani
[2019] proposed Conv-Tasnet, a model that reuses the masking approach of spectrogram
methods but learns the masks jointly with a convolutional front-end, operating directly
in the waveform domain for both the inputs and outputs. Conv-Tasnet surpasses both
the IRM and IBM oracles.

Our first contribution is to adapt the Conv-Tasnet architecture, originally designed for
monophonic speech separation and audio sampled at 8 kHz, to the task of stereophonic
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Figure 3.1.: Mel-spectrogram for a 0.8 seconds extract of the bass source from the track
“Stich Up” of the MusDB test. From left to right: ground truth, Conv-
Tasnet estimate and Demucs estimate. We observe that Conv-Tasnet missed
one note entirely.

music source separation for audio sampled at 44.1 kHz. Our experiments show that
Conv-Tasnet outperforms all previous methods by a large margin, with an SDR (averaged
over all sources) of 5.7, but still under the SDR of the IRM oracle at 8.2 [Stöter et al.,
2018]. While Conv-Tasnet separates with a high accuracy the different sources, we
observed artifacts when listening to the generated audio: a constant broadband noise,
hollow instruments attacks or even missing parts. They are especially noticeable on the
drums and bass sources and we give one example on Figure 3.1. Conv-Tasnet uses an
over-complete linear representation on which it applies a mask obtained from a deep
convolutional network. Because both the encoder and decoder are linear, the masking
operation cannot synthesize new sounds. We conjecture that the overlap of multiples
instruments sometimes lead to a loss of information that is not reversible by a masking
operation.

To overcome the limitations of Conv-Tasnet, our second contribution is to propose
Demucs, a new architecture for music source separation. Similarly to Conv-Tasnet,
Demucs is a deep learning model that directly operates on the raw input waveform and
generates a waveform for each source. Demucs is inspired by models for music synthesis
rather than masking approaches. It is a U-net architecture with a convolutional encoder
and a decoder based on wide transposed convolutions with large strides inspired by the
SING architecture presented in Chapter 2. The other critical features of the approach
are a bidirectional LSTM between the encoder and the decoder, increasing the number
of channels exponentially with depth, gated linear units as activation function [Dauphin
et al., 2017] which also allow for masking, and a new initialization scheme.
We present experiments on the MusDB benchmark, which first show that both Conv-

Tasnet and Demucs achieve performances significantly better than the best methods that
operate on the spectrogram, with Conv-Tasnet being better than Demucs in terms of

57



SDR. We also perform human evaluations that compare Conv-Tasnet and our Demucs,
which show that Demucs has significantly better perceived quality. The smaller SDR
of Demucs is explained by more contamination from other sources. We also conduct an
in-depth ablation study of the Demucs architecture to demonstrate the impact of the
various design decisions. Finally, we carry out additional experiments by adding 150
songs to the training set. In this experiment, Demucs and TasNet both achieve an SDR
of 6.3, suggesting that the gap in terms of SDR between the two models diminishes with
more data, making the Demucs approach promising. The 6.3 points of SDR also set a
new state-of-the-art, since it improves on the best previous result of 6.0 on the MusDB
test set obtained by training with 800 additional songs.
We discuss in more detail the related work in the next Section. We then describe the

original Conv-Tasnet model of Luo and Mesgarani [2018] and its adaptation to music
source separation. Our Demucs architecture is detailed in Section 3.4. We present the
experimental protocol in Section 3.5, and the experimental results compared to the state-
of-the-art in Section 3.6. Finally, we describe the results of the human evaluation and
the ablation study.

3.2. Related Work

A first category of methods for supervised music source separation work on time-frequency
representations. They predict a power spectrogram for each source and reuse the phase
from the input mixture to synthesise individual waveforms. Traditional methods have
mostly focused on blind (unsupervised) source separation. Non-negative matrix factor-
ization techniques [Smaragdis et al., 2014] model the power spectrum as a weighted sum
of a learnt spectral dictionary, whose elements are grouped into individual sources. Inde-
pendent component analysis [Hyvärinen et al., 2004] relies on independence assumptions
and multiple microphones to separate the sources. Learning a soft/binary mask over
power spectrograms has been done using either HMM-based prediction [Roweis, 2001]
or segmentation techniques [Bach and Jordan, 2005].
With the development of deep learning, fully supervised methods have gained mo-

mentum. Initial work was performed on speech source separation [Grais et al., 2014],
followed by works on music using simple fully connected networks over few spectro-
gram frames [Uhlich et al., 2015], LSTMs [Uhlich et al., 2017], or multi scale con-
volutional/recurrent networks [Liu and Yang, 2018, Takahashi and Mitsufuji, 2017].
Nugraha et al. [2016] showed that Wiener filtering is an efficient post-processing step
for spectrogram-based models and it is now used by all top performing models in this
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category. Those methods have performed the best during the last SiSec 2018 evalua-
tion [Stöter et al., 2018] for source separation on the MusDB [Rafii et al., 2017] dataset.
After the evaluation, a reproducible baseline called Open Unmix has been released by
Stöter et al. [2019] and matches the top submissions trained only on MusDB. MM-
DenseLSTM, a model proposed by Takahashi et al. [2018] and trained on 807 unreleased
songs currently holds the absolute record of SDR in the SiSec campaign. Both Demucs
and Conv-Tasnet obtain significantly higher SDR.
More recently, models operating in the waveform domain have been developed, so

far with worse performance than those operating in the spectrogram domain. A convo-
lutional network with a U-Net structure called Wave-U-Net was used first on spectro-
grams [Jansson et al., 2017] and then adapted to the waveform domain [Stoller et al.,
2018]. Wave-U-Net was submitted to the SiSec 2018 evaluation campaign with a per-
formance inferior to that of most spectrogram domain models by a large margin. A
Wavenet-inspired, although using a regression loss and not auto-regressive, was first
used for speech denoising [Rethage et al., 2018] and then adapted to source separa-
tion [Lluís et al., 2018]. Our model significantly outperforms Wave-U-Net.Given that
the Wavenet inspired model performed worse than Wave-U-Net, we did not consider it
for comparison.
In the field of monophonic speech source separation, spectrogram masking methods

have enjoyed good performance [Kolbæk et al., 2017, Isik et al., 2016]. Luo and Mesgarani
[2018] developed a waveform domain methods using masking over a learnable front-end
obtained from a LSTM that reached the same accuracy. Improvements were obtained
by Wang et al. [2018] for spectrogram methods using the unfolding of a few iterations
of a phase reconstruction algorithm in the training loss. In the mean time, Luo and
Mesgarani [2019] refined their approach, replacing the LSTM with a superposition of
dilated convolutions, which improved the SDR and definitely surpassed spectrogram
based approaches, including oracles that use the ground truth sources such as the ideal
ratio mask (IRM) or the ideal binary mask (IBM). We show in this chapter that Conv-
Tasnet also outperforms all known methods for music source separation. However it
suffers from significantly more artifacts than the Demucs architecture we introduce in
this chapter, as measured by mean opinion score.

3.3. Adapting Conv-Tasnet for music source separation

We describe in this section the Conv-Tasnet architecture of Luo and Mesgarani [2019]
and give the details of how we adapted the architecture to fit the setting of the MusDB
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dataset.

Overall framework Each source s is represented by a waveform xs ∈ RC,T where C
is the number of channels (1 for mono, 2 for stereo) and T the number of samples of
the waveform. The mixture (i.e., music track) is the sum of all sources x := ∑S

s=1 xs.
We aim at training a model g parameterized by θ, such that g(x) = (gs(x; θ))Ss=1, where
gs(x; θ) is the predicted waveform for source s given x, that minimizes

min
θ

∑
x∈D

S∑
s=1

L(gs(x; θ), xs) (3.1)

for some dataset D and reconstruction error L. The original Conv-Tasnet was trained
using a loss called scale-invariant source-to-noise ratio (SI-SNR), similar to the SDR loss
described in Section 3.5. We instead use a simple L1 loss between the estimated and
ground truth sources. We discuss in more details regression losses in the context of our
Demucs architecture in Section 3.4.2.

The original Conv-Tasnet architecture Conv-Tasnet [Luo and Mesgarani, 2018] is
composed of a learnt front-end that transforms back and forth between the input mono-
phonic mixture waveform sampled at 8 kHz and a 128 channels over-complete represen-
tation sampled at 1 kHz using a convolution as the encoder and a transposed convolution
as the decoder, both with a kernel size of 16 and stride of 8. The high dimensional repre-
sentation is masked through a separation network composed of stacked residual blocks.
Each block is composed of a a 1x1 convolution, a PReLU [He et al., 2015] non linearity, a
layer wise normalization over all channels jointly [Ba et al., 2016], a depth-wise separable
convolution [Chollet, 2017, Howard et al., 2017] with a kernel size of 3, a stride of 1 and
a dilation of 2nmodN , with n the 0-based index of the block and N an hyper-parameter,
and another PReLU and normalization. The output of each block participates to the
final mask estimation through a skip connection, preceded by a 1x1 convolution. The
original Conv-Tasnet counted 3×N blocks with N = 8. The mask is obtained summing
the output of all blocks and then applying ReLU. The output of the encoder is multiplied
by the mask and before going through the decoder.

Conv-Tasnet for music source separation We adapted their architecture to the task
of stereophonic music source separation: the original Conv-Tasnet has a receptive field
of 1.5 seconds for audio sampled at 8 kHz, we take N = 10 and increased the kernel size
(resp. stride) of the encoder/decoder from 16 (resp. 8) to 20 (resp. 10), leading to the
same receptive field at 44.1 kHz. We observed better results using 4×N blocks instead
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of 3×N and 256 channels for the encoder/decoder instead of 128. With those changes,
Conv-Tasnet obtained state-of-the-art performance on the MusDB dataset, surpassing
all known spectrogram based methods by a large margin as shown in Section 3.6.

Separating entire songs The original Conv-Tasnet model was designed for short sen-
tences of a few seconds at most. When evaluating it on an entire track, we obtained
the best performance by first splitting the input track into chunks of 8 seconds each.
We believe this is because of the global layer normalization. During training, only small
audio extracts are given, so that a quiet part or a loud part would be scaled back to an
average volume. However, when using entire songs as input, it will most likely contain
both quiet and loud parts. The normalization will not map both to the same volume,
leading to a difference between training and evaluation. We did not observe any side ef-
fects when going from one chunk to the next, so we did not look into fancier overlap-add
methods.

3.4. The Demucs Architecture

The architecture we propose, which we call Demucs, is described in the next few subsec-
tions, and the reconstruction loss is discussed in Section 3.4.2. Demucs takes a stereo
mixture as input and outputs a stereo estimate for each source (C = 2). It is an en-
coder/decoder architecture composed of a convolutional encoder, a bidirectional LSTM,
and a convolutional decoder, with the encoder and decoder linked with skip U-Net con-
nections. Similarly to other work in generation in both image [Karras et al., 2018, 2017]
and sound (see Chapter 2), we do not use batch normalization [Ioffe and Szegedy, 2015]
as our early experiments showed that it was detrimental to the model performance. The
overall architecture is depicted in Figure 3.2a.

3.4.1. Convolutional auto-encoder

Encoder The encoder is composed of L := 6 stacked convolutional blocks numbered
from 1 to L. Each block i is composed of a convolution with kernel size K := 8, stride
S := 4, Ci−1 input channels, Ci output channels and ReLU activation, followed by a
convolution with kernel size 1, 2Ci output channels and gated linear units (GLU) as
activation function [Dauphin et al., 2017]. Since GLUs halve the number of channels,
the final output of block i has Ci output channels. A block is described in Figure 3.2b.
Convolutions with kernel width 1 increase the depth and expressivity of the model at
low computational cost. As we show in our ablation study 3.6.2, the usage of GLU
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Encoder1(Cin = 2, Cout = 100)

Encoder2(Cin = 100, Cout = 200)

. . .

Encoder6(Cin = 1600, Cout = 3200)

L S T M
hidden size=3200
2 bidirectional layers

Linear(Cin = 6400, Cout = 3200)
Decoder6(Cin = 3200, Cout = 1600)

. . .

Decoder2(Cin = 200, Cout = 100)

Decoder1(Cin = 100, Cout = 4 ∗ 2)

(a) Demucs architecture with the mixture
waveform as input and the four sources esti-
mates as output. Arrows represents U-Net
connections.

GLU(Conv1d(Cin, 2Cin,K = 3, S = 1))

Relu(ConvTr1d(Cin, Cout,K = 8, S = 4))

Encoderi

+
Decoderi+1 or LSTM

Decoderi−1 or output

Relu(Conv1d(Cin, Cout,K = 8, S = 4))

GLU(Conv1d(Cout, 2Cout,K = 1, S = 1))

Decoderi

Encoderi−1 or input

Encoderi+1 or LSTM

(b) Detailed view of the layers Decoderi on the
top and Encoderi on the bottom. Arrows
represent connections to other parts of the
model. For convolutions, Cin (resp Cout) is
the number of input channels (resp output),
K the kernel size and S the stride.

Figure 3.2.: Demucs complete architecture on the left, with detailed representation of
the encoder and decoder layers on the right.
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activations after these convolutions significantly boost performance. The number of
channels in the input mixture is C0 = C = 2, while we use C1 := 100 as the number
of output channels for the first encoder block. The number of channels is then doubled
at each subsequent block, i.e., Ci := 2Ci−1 for i = 2..L, so the final number of channels
is CL = 3200. We then use a bidirectional LSTM with 2 layers and a hidden size CL.
The LSTM outputs 2CL channels per time position. We use a linear layer to take that
number down to CL.

Decoder The decoder is mostly the inverse of the encoder. It is composed of L blocks
numbered in reverse order from L to 1. The i-th blocks starts with a convolution with
stride 1 and kernel width 3 to provide context about adjacent time steps, input/output
channels Ci and a ReLU activation. Finally, we use a transposed convolution with kernel
width 8 and stride 4, Ci−1 outputs and ReLU activation. The S sources are synthesized
at the final layer only, after all decoder blocks. The final layer is linear with S · C0

output channels, one for each source (4 stereo channels in our case), without any addi-
tional activation function. Each of these channels directly generate the corresponding
waveform.

U-network structure Similarly to Wave-U-Net [Jansson et al., 2017], there are skip
connections between the encoder and decoder blocks with the same index, as originally
proposed in U-networks [Ronneberger et al., 2015]. While the main motivation comes
from empirical performances, an advantage of the skip connections is to give a direct
access to the original signal, and in particular allows to directly transfers the phase of
the input signal to the output, as discussed in Section 3.4.2. Unlike Wave-U-Net, we use
transposed convolutions rather than linear interpolation followed by a convolution with
a stride of 1. For the same increase in the receptive field, transposed convolutions require
4 times less operations and memory. This limits the overall number of channels that can
be used before running out of memory. As we observed that a large number of channels
was key to obtaining good results, we favored the use of transposed convolutions, as
explained in Section 3.6.

Motivation: synthesis vs masking The approach we follow uses the U-Network archi-
tecture [Ronneberger et al., 2015, Stoller et al., 2018, Jansson et al., 2017], and builds
on transposed convolutions with large number of channels and large strides (4) inspired
by the approach to the synthesis of music notes described in Chaper 2. The U-Net
skip connections and the gating performed by GLUs imply that this architecture is ex-
pressive enough to represent masks on a learnt representation of the input signal, in
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a similar fashion to Conv-Tasnet. The Demucs approach is then more expressive than
Conv-Tasnet, and its main advantages are the multi-scale representations of the input
and the non-linear transformations to and from the waveform domain.

3.4.2. Loss function

For the reconstruction loss L(gs(x; θ), xs) in (3.1), we either use the average mean square
error or average absolute error between waveforms: for a waveform xs containing T

samples and corresponding to source s, a predicted waveform x̂s and denoting with a
subscript t the t-th sample of a waveform, we use one of L1 or L2:

L1(x̂s, xs) = 1
T

T∑
t=1
|x̂s,t − xs,t| L2(x̂s, xs) = 1

T

T∑
t=1

(x̂s,t − xs,t)2 . (3.2)

In generative models for audio, direct reconstruction losses on waveforms can pose
difficulties because they are sensitive to the initial phases of the signals: two signals
whose only difference is a shift in the initial phase are perceptually the same, but can
have arbitrarily high L1 or L2 losses. It can be a problem in pure generation tasks because
the initial phase of the signal is unknown, and losses on power/magnitude spectrograms
are alternative that do not suffer from this lack of specification of the output. Approaches
that follow this line either generate spectrograms [e.g., Wang et al., 2017], or use a loss
that compares power spectrograms of target/generated waveforms (see Chapter 2).
The problem of invariance to a shift of phase is not as severe in source separation

as it is in unconditional generation, because the model has access to the original phase
of the signal. The phase can easily be recovered from the skip connections in U-net-
style architectures for separation, and is directly used as input of the inverse STFT for
methods that generate masks on power spectrograms. As such, losses such as L1/L2 are
totally valid for source separation. Early experiments with an additional term including
a loss on the log-power spectrogram did not suggest that it boosts performance, so we
did not pursue this direction any further. Most our experiments use L1 loss, and the
ablation study presented in Section 3.6.2 suggests that there is no significant difference
between L1 and L2.

3.4.3. Weight rescaling at initialization

The initialization of deep neural networks is known to have a critical impact on the
overall performances [Glorot and Bengio, 2010, He et al., 2015], up to the point that
Zhang et al. [2019] showed that with a different initialization called fixup, very deep
residual networks and transformers can be trained without batch normalization. While
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Fixup is not designed for U-Net-style skip connections, we observed that the following
different initialisation scheme had great positive impact on performances compared to
the standard initialization of He et al. [2015] used in U-Networks.
Considering the so-called Kaiming initialization [He et al., 2015] as a baseline, let

us look at a single convolution layer for which we denote w the weights after the first
initialization. We take α := std(w)/a, where a is a reference scale, and replace w by
w′ = w/

√
α. Since the original weights have element-wise order of magnitude (KCin)−1/2

where K is the kernel width and Cin the number of output channels, it means that
our initialization scheme produces weights of order of magnitude (KCin)−1/4, together
with a non-trivial scale. Based a search over the values [0.01, 0.05, 0.1], we select
a = 0.1 for all the regular and transposed convolutions, see Section 3.6 for more details.
We experimentally observed that on a randomly initialized model applied to an audio
extract, it kept the standard deviation of the features along the layers of the same order
of magnitude. Without initial rescaling, the output the last layer has a magnitude 20
times smaller than the first.

3.4.4. Randomized equivariant stabilization

A perfect source separation model is time equivariant, i.e. shifting the input mixture
by X samples will shift the output Y by the exact same amount. Thanks to its dilated
convolutions with a stride of 1, the mask predictor of Conv-Tasnet is naturally time
equivariant and even if the encoder/decoder is not strictly equivariant, Conv-Tasnet still
verifies this property experimentally [Luo and Mesgarani, 2019]. Spectrogram based
method will also verify approximately this property. Shifting the input by a small
amount will only reflect in the phase of the spectrogram. As the mask is computed only
from the magnitude, and the input mixture phase is reused, the output will naturally be
shifted by the same amount. On the other hand, we noticed that our architecture did
not naturally satisfy this property. We propose a simple workaround called randomized
equivariant stabilization, where we sample S random shifts of an input mixture x and
average the predictions of our model for each, after having applied the opposite shift.
This technique does not require changing the training procedure or network architecture.
Using S = 10, we obtained a 0.3 SDR gain, see Section 3.6.2 for more details. It does
make evaluation of the model S times slower, however, on a V100 GPU, separating 1
minute of audio at 44.1 kHz with Demucs takes only 0.8 second. With this technique,
separation of 1 minute takes 8 seconds which is still more than 7 times faster than real
time.
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3.5. Experimental setup

3.5.1. Evaluation framework

MusDB and additional data We use the MusDB dataset [Rafii et al., 2017] , which
is composed of 150 songs with full supervision in stereo and sampled at 44100Hz. For
each song, we have the exact waveform of the drums, bass, other and vocals parts, i.e.
each of the sources. The actual song, the mixture, is the sum of those four parts. The
first 84 songs form the train set, the next 16 songs form the valid set (the exact split
is defined in the musdb python package) while the remaining 50 are kept for the test
set. We collected raw stems for 150 tracks, i.e., individual instrument recordings used
in music production software to make a song. We manually assigned each instrument to
one of the sources in MusDB. We call this extra supervised data the stem set. We also
report the performances of Tasnet and Demucs trained using these 150 songs in addition
to the 84 from MusDB, to anaylze the effect of adding more training data.

Source separation metrics Measurements of the performance of source separation
models was developed by Vincent et al. for blind source separation [Vincent et al., 2006]
and reused for supervised source separation in the SiSec Mus evaluation campaign [Stöter
et al., 2018]. Similarly to previous work [Stoller et al., 2018, Takahashi and Mitsufuji,
2017, Takahashi et al., 2018], we focus on the SDR (Signal to Distortion Ratio) which
measures the log ratio between the volume of the estimated source projection onto the
ground truth, and the volume of what is left out of this projection, typically contami-
nation by other sources or artifacts. Other metrics can be defined (SIR and SAR) and
we present them in the supplementary material. We used the python package museval
which provide a reference implementation for the SiSec Mus 2018 evaluation campaign.
As done in the SiSec Mus competition, we report the median over all tracks of the median
of the metric over each track computed using the museval package.

3.5.2. Baselines

As baselines, we selected Open Unmix [Stöter et al., 2019], a 3-layer BiLSTM model with
encoding and decoding fully connected layers on spectrogram frames. It was released by
the organizers of the SiSec 2018 to act as a strong reproducible baseline and matches
the performances of the best candidates trained only on MusDB. We also selected MM-
DenseLSTM [Takahashi et al., 2018], a multi-band dense net with LSTMs at different
scales of the encoder and decoder. This model was submitted as TAK2 and trained
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with 804 extra labeled songs1. Both MMDenseLSTM and Open Unmix use Wiener fil-
tering [Nugraha et al., 2016] as a last post processing step. The only waveform based
method submitted to the evaluation campaign is Wave-U-Net [Stoller et al., 2018] with
the identifier STL2. Metrics were downloaded from the SiSec submission repository.
for Wave-U-Net and MMDenseLSTM. For Open Unmix they were provided by their
authors2. We also provide the metrics for the Ideal Ratio Mask oracle (IRM), which
computes the best possible mask using the ground truth sources and is the topline of
spectrogram based method [Stöter et al., 2018].

3.5.3. Training procedure

Epoch definition and augmentation We define one epoch over the dataset as a pass
over all 11-second extracts with a stride of 1 second. We use a random audio shift
between 0 and 1 second and keep 10 seconds of audio from there as a training example.
We perform the following data augmentation [Uhlich et al., 2017], also used by Open
Unmix and MMDenseLSTM: shuffling sources within one batch to generate one new mix,
randomly swapping channels. We additionally multiply each source by ±1 [Nachmani
and Wolf, 2019]. All Demucs models were trained over 240 epochs. Conv-Tasnet was
trained for 360 epochs when trained only on MusDB and 240 when trained with extra
data and using only 2-seconds audio extracts.

Training setup and hyper-parameters All models are trained with 16 V100 GPUs with
32GB of RAM. We use a batch size of 64, the Adam [Kingma and Ba, 2014] optimizer
with a learning rate was chosen among [3e-4, 5e-4] and the initial number of channels
was chosen in [64, 80, 100] based on the L1 loss on the validation set. We obtained best
performance with a learning rate of 3e− 4 and 100 channels. We then tried 3 different
values for the initial weight rescaling reference level described in Section 3.4.3, [0.01,
0.05, 0.1] and selected 0.1. We computed confidence intervals using 5 random seeds in
Table 3.1. For the ablation study on Table 3.4, we provide metrics for a single run.

3.6. Experimental results

In this section, we first provide experimental results on the MusDB dataset for Conv-
Tasnet and Demucs compared with state-of-the-art baselines. We then dive into the
ablation study of Demucs.

1Source: https://sisec18.unmix.app/#/methods/TAK2
2https://zenodo.org/record/3370486
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Table 3.1.: Comparison of Conv-Tasnet and Demucs to state-of-the-art models that op-
erate on the waveform (Wave-U-Net) and on spectrograms (Open-Unmix
without extra data, MMDenseLSTM with extra data) as well as the IRM
oracle on the MusDB test set. The Extra? indicates the number of extra
training songs used. We report the median over all tracks of the median
SDR over each track, as done in the SiSec Mus evaluation campaign [Stöter
et al., 2018]. The All column reports the average over all sources. Demucs
metrics are averaged over 5 runs, the confidence interval is the standard de-
viation over

√
5. In bold are the values that are statistically state-of-the-art

either with or without extra training data.

Test SDR in dB

Architecture Wav? Extra? All Drums Bass Other Vocals

IRM oracle 7 N/A 8.22 8.45 7.12 7.85 9.43

Open-Unmix 7 7 5.33 5.73 5.23 4.02 6.32
Wave-U-Net 3 7 3.23 4.22 3.21 2.25 3.25
Demucs 3 7 5.58 ±.03 6.08 ±.06 5.83 ±.07 4.12 ±.04 6.29 ±.07

Conv-Tasnet 3 7 5.73 ±.03 6.08 ±.06 5.66 ±.16 4.37 ±.02 6.81 ±.04

Demucs 3 150 6.33 ±.02 7.08 ±.07 6.70 ±.06 4.47±.03 7.05 ±.04

Conv-Tasnet 3 150 6.32 ±.04 7.11 ±.13 7.00 ±.05 4.44±.03 6.74 ±.06

MMDenseLSTM 7 804 6.04 6.81 5.40 4.80 7.16
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Table 3.2.: Mean Opinion Scores (MOS) evaluating the quality and absence of artifacts
of the separated audio. 38 people rated 20 samples each, randomly sample
from one of the 3 models or the ground truth. There is one sample per track
in the MusDB test set and each is 8 seconds long. Ratings of 5 means that
the quality is perfect (no artifacts).

Quality Mean Opinion Score

Architecture All Drums Bass Other Vocals

Ground truth 4.46 ±.07 4.56 ±.13 4.25 ±.15 4.45 ±.13 4.64 ±.13

Open-Unmix 3.03 ±.09 3.10 ±.17 2.93 ±.20 3.09 ±0.16 3.00 ±.17

Demucs 3.22 ±.09 3.77 ±.15 3.26 ±.18 3.32 ±.15 2.55 ±.20

Conv-Tasnet 2.85 ±.08 3.39 ±.14 2.29 ±.15 3.18 ±.14 2.45 ±.16

Table 3.3.: Mean Opinion Scores (MOS) evaluating contamination by other sources. 38
people rated 20 samples each, randomly sampled from one of the 3 models
or the ground truth. There is one sample per track in the MusDB test set
and each is 8 seconds long. Ratings of 5 means no contamination by other
sources.

Contamination Mean Opinion Score

Architecture All Drums Bass Other Vocals

Ground truth 4.59 ±.07 4.44 ±.18 4.69 ±.09 4.46 ±.13 4.81 ±.11

Open-Unmix 3.27 ±.11 3.02 ±.19 4.00 ±.20 3.11 ±.21 2.91 ±.20

Demucs 3.30 ±.10 3.08 ±.21 3.93 ±.18 3.15 ±.19 3.02 ±.20

Conv-Tasnet 3.42 ±.09 3.37 ±.17 3.73 ±.18 3.46 ±.17 3.10 ±.17
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3.6.1. Comparison with baselines

We provide a comparison the state-of-the-art baselines on Table 3.1. The models on the
top half were trained without any extra data while the lower half used unreleased training
songs. As no previous work included confidence intervals, we considered the single metric
provided by for the baselines as the exact estimate of their mean performance.

Quality of the separation We first observe that Demucs and Conv-Tasnet outperforms
all previous methods for music source separation. Conv-Tasnet has significantly higher
SDR with 5.73, improving by 0.4 over Open-Unmix. Our proposed Demucs architec-
ture has worse overall performance but matches Conv-Tasnet for the drums source and
surpasses it for the bass. When training on 150 extra songs, the two methods have
the same overall performance of 6.3 SDR, beating MMDenseLSTM by nearly 0.3 SDR,
despite MMDenseLSTM being tained on 804 extra songs. Unlike for speech separa-
tion [Luo and Mesgarani, 2019], all methods are still far below the IRM oracle, leaving
room for future improvements. We provide results for the other metrics (SIR and SAR)
as well as box plots with quantiles over the test set tracks in Appendix, Section A.2.
Audio samples for Demucs, Conv-Tasnet and all baselines are provided at the address
https://ai.honu.io/papers/demucs/.

Human evaluations We noticed strong artifacts on the audio separated by Conv-
Tasnet, especially for the drums and bass sources: static noise between 1 and 2 kHz,
hollow instrument attacks or missing notes as illustrated on Figure 3.1. In order to
confirm this observation, we organized a mean opinion score survey. We separated 8
seconds extracts from all of the 50 test set tracks for Conv-Tasnet, Demucs and Open-
Unmix. We asked 38 participants to rate 20 samples each, randomly taken from one of
the 3 models or the ground truth. For each one, they were required to provide 2 ratings
on a scale of 1 to 5. The first one evaluated the quality and absence of artifacts (1:
many artifacts and distortion, content is hardly recognizable, 5: perfect quality, no arti-
facts) and the second one evaluated contamination by other sources (1: contamination
if frequent and loud, 5: no contamination). We show the results on Tables 3.2 and 3.3.
We confirmed that the presence of artifacts in the output of Conv-Tasnet degrades the
user experience, with a rating of 2.85±.08 against 3.22± .09 for Demucs. On the other
hand, Conv-Tasnet samples had less contamination by other sources than Open-Unmix
or Demucs, although by a small margin, with a rating of 3.42 ± .09 against 3.30 ± .10
for Demucs and 3.27± .11 for Open-Unmix.
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Table 3.4.: Ablation study for the novel elements in our architecture described in Sec-
tion 3.4. We use only the train set from MusDB and report best L1 loss
over the valid set throughout training as well the SDR on the test set for the
epoch that achieved this loss.

Valid set Test set
Difference L1 loss SDR

no initial weight rescaling 0.172 4.94
no BiLSTM 0.175 5.12
ReLU instead of GLU 0.177 5.19
no 1x1 convolutions in encoder 0.176 5.30
no randomized equivariant stabilization N/A 5.34
kernel size of 1 in decoder convolutions 0.166 5.51
MSE loss N/A 5.55

Reference 0.164 5.58

Training speed We measured the time taken to process a single batch of size 16 with 10
seconds of audio at 44.1kHz (the original Wave-U-Net being only trained on 22 kHz audio,
we double the time for fairness), ignoring data loading and using torch.cuda.synchronize
to wait on all kernels to be completed. MMDenseLSTM does not provide a reference
implementation. Wave-U-Net takes 1.2 seconds per batch, Open Unmix 0.2 seconds per
batch and Demucs 1.6 seconds per batch. Conv-Tasnet cannot be trained with such a
large sample size, however a single iteration over 2 seconds of audio with a batch size of
4 takes 0.7 seconds.

Model size The model size for the proposed version of Demucs is 2.4GB, and only
42MB for Conv-Tasnet. Open-Unmix in comparison is 136MB.

3.6.2. Ablation study for Demucs

We provide an ablation study of the main design decisions for Demucs in Table 3.4.
Given the cost of training a single model, we did not compute confidence intervals
for each variation. Yet, any difference inferior to .06, which is the standard deviation
observed over 5 repetitions of the Reference model, could be attributed to noise.
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We observe a small but not significant improvement when using the L1 loss instead
of the MSE loss. Adding a BiLSTM and using the initial weight rescaling described in
Section 3.4.3 provides significant gain, with an extra 0.48 SDR for the first and 0.64
for the second. We observe that using randomized equivariant stabilization as described
in Section 3.4 gives a gain of almost 0.3 SDR. We did not report the validation loss as
we only use the stabilization when computing the SDR over the test set. We applied
the randomized stabilization to Open-Unmix and Conv-Tasnet with no gain, since, as
explained in Section 3.4.4, both are naturally equivariant with respect to initial time
shifts.
We introduced extra convolutions in the encoder and decoder, as described in Sec-

tions 3.4.1. The two proved useful, improving the expressivity of the model, especially
when combined with GLU activation. Using a kernel size of 3 instead of 1 in the de-
coder further improves performance. We conjecture that the context from adjacent time
steps helps the output of the transposed convolutions to be consistent through time and
reduces potential artifacts arising from using a stride of 4.

3.7. Conclusion

We showed that Conv-Tasnet, a state-of-the-art architecture for speech source sepa-
ration that predicts masks on a learnt front-end over the waveform domain, achieves
state-of-the-art performance for music source separation, improving over all previous
spectrogram or waveform domain methods by 0.4 SDR. While Conv-Tasnet has excel-
lent performance to separate sources, it suffers from noticeable artifacts as confirmed by
human evaluations. We developed an alternative approach, Demucs, that combines the
ability to mask over a learnt representation with stronger decoder capacity that allows
for audio synthesis. We conjecture that this can be useful when information is lost in
the mix of instruments and cannot simply be recovered by masking. We show that our
approach produces audio of significantly higher quality as measures by mean opinion
scores and matches the SDR of Conv-Tasnet when trained with 150 extra tracks. We
believe those results make it a promising alternative to methods based on masking only.
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4. Adabatch: an efficient gradient
aggregation rule for sparse optimization

Abstract

We study a new aggregation operator for gradients coming from a mini-batch for stochas-
tic gradient (SG) methods that allows a significant speed-up in the case of sparse opti-
mization problems. We call this method AdaBatch and it only requires a few lines of
code change compared to regular mini-batch SGD algorithms. We provide a theoretical
insight to understand how this new class of algorithms is performing and show that it
is equivalent to an implicit per-coordinate rescaling of the gradients, similarly to what
Adagrad methods can do. In theory and in practice, this new aggregation allows to keep
the same sample efficiency of SG methods while increasing the batch size. Experimen-
tally, we also show that in the case of smooth convex optimization, our procedure can
even obtain a better loss when increasing the batch size for a fixed number of samples.
We then apply this new algorithm to obtain a parallelizable stochastic gradient method
that is synchronous but allows speed-up on par with Hogwild! methods as convergence
does not deteriorate with the increase of the batch size. The same approach can be used
to make mini-batch provably efficient for variance-reduced SG methods such as SVRG.

4.1. Introduction

We consider large-scale supervised learning with sparse features, such as logistic regres-
sion, least-mean-square or support vector machines, with a very large dimension as well
as a very large number of training samples with many zero elements, or even an infi-
nite stream. A typical example of such use of machine learning is given by Ads click
prediction where many sparse features can be used to improve prediction on a problem
with a massive online usage. For such problems, stochastic gradient (SG) methods have
been used successfully [Bottou and Bousquet, 2008, Bach and Moulines, 2011, McMahan
et al., 2013].
Sparse optimization requires the usage of CPUs and unlike other domains in machine
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learning, it did not benefit much from the ever increasing parallelism accessible in GPUs
or dedicated hardware. The frequency of CPUs has been stagnating and we can no
longer rely on the increase of CPU sequential computational power for SG methods to
scale with the increase of data [Venu, 2011]. New CPUs now rely on multi-core and
sometimes multi-socket design to offer more power to its users. As a consequence, many
attemps have been made at parallelizing and distributing SG methods [Zinkevich et al.,
2010, 2009, Niu et al., 2011, Hsieh et al., 2015]. Those approaches can be classified in
two types: (a) synchronous methods, that seek a speed-up while staying logically equiv-
alent to a sequential algorithm, (b) asynchronous methods, which allow some differences
and approximations from the sequential algorithms, such as allowing delays in gradient
updates, dropping overlapping updates from different workers or allowing inconsistent
reads from the model parameters. The latter such as Hogwild! [Niu et al., 2011] have
been more successful as the synchronization overhead between workers from synchronous
methods made them impractical.
Such methods however do not lead to a complete provability of convergence for step-

sizes used in practice, as most proof methods require some approximation [Niu et al.,
2011, Mania et al., 2015]. Proving convergence for such methods is not as straightforward
as there is not anymore a clear sequence of iterates that actually exist in memory and
conflicting writes to memory or inconsistent reads can occur. When increasing the
number of workers it is also likely to increase how stale a gradient update is when being
processed.
Synchronous approaches rely mostly on the usage of mini-batches in order to parallelize

the workload [Dekel et al., 2012]. Increasing the size of the mini-batches will lead to a
reduction of the variance of the gradients and the overall estimator. However for the
same number of samples we will be doing B times less iterations where B is the size of the
mini-batch. In practice one has to increase the learning rate (i.e., the step size) in order
to compensate and achieve the same final accuracy as without mini-batches; however
increasing the step size can lead to divergence and is sometimes impossible [Jain et al.,
2016]. The decrease in sample efficiency (i.e., a worse performance for a given number of
processed training samples) is especially visible early during optimization and will lower
over time as the algorithm reaches an asymptotic regime where using mini-batches of
size B will have the same sample efficiency as without mini-batches.
In this chapter, we make the following contributions:

• We propose in Section 4.2 a new merging operator for gradients computed over a
mini-batch, to replace taking the average. Instead, for each mini-batch we count
for each coordinate how many samples had a non zero gradient in that direction.
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Rather than taking the sum of all gradients and dividing by B we instead divide
each coordinate independently by the number of times it was non zero in the
batch. This happens to be equivalent to reconditioning the initial problem in
order to exploit its sparsity. Because each coordinate is still an average (albeit a
stochastic one), the norm of the gradient will stay under control. In order to notice
this effect, one has to look at the problem in a different geometry that accounts
for the sparsity of the data. We also draw a parallel with Adagrad-type methods
[Duchi et al., 2011, Roux et al., 2008] as our operator is equivalent to an implicit
rescaling of the gradients per coordinate.

• We show in Section 4.3 that this new merging rule outperforms regular mini-batch
on sparse data and that it can have the same if not an improved sample efficiency
compared to regular SGD without mini-batch.

• We explain in Section 4.4 how this can be used to make synchronous parallel or
distributed methods able to compete with asynchronous ones while being easier to
study as they are logically equivalent to the sequential version.

• We extend our results to variance-reduced SG methods such as SVRG in Section 4.5
and show similar gains are obtained when using AdaBatch.

• We present in Section 4.6 experimental results to support our theoretical claims as
well as a proof of concept that our new merging operator can make synchronous
parallel SG methods competitive with asynchronous ones. We also extend our
experiments to variance reduction methods like SVRG and show that AdaBatch
yields similar improvement as in the case of SG methods.

Notations. Throughout this chapter, ‖ · ‖ denotes the Euclidean norm on Rd and
for any symmetric positive definite matrix D, ‖·‖D is the norm defined by D so that
∀x ∈ Rd, ‖x‖2D = xTDx; for a set A, |A| denotes the cardinality of A. If x ∈ Rd then x(k)

denotes the k-th coordinate and Diag (x) is the d×d diagonal matrix with the coefficient
of x on its diagonal. We define for any integer n, [n] := {1, 2, . . . , n}. Finally, for any
function h : Rd → R, we will define the support of h as

S (h) = {k ∈ [d] :∃(x, y) ∈ Rd × Rd, x(k) 6= y(k) and h(x) 6= h(y)}. (4.1)
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4.1.1. Problem setup

We consider f a random variable with values in the space of convex functions F from
Rd to R. We define F (w) := E [f(w)] and we wish to solve the optimization problem

F∗ = min
w∈Rd

F (w). (4.2)

It should be noted that the gradient f ′ will only have non zero coordinate along the
directions of the support S (f) so that if the support of f is sparse, so will the update for
SG methods. We define p ∈ Rd by ∀k ∈ [d], p(k) := P [k ∈ S (f)]. We take pmin := min(p)
and pmax = max(p).
This setup covers many practical cases, such as finite sum optimization where f would

have the uniform distribution over the sum elements or stochastic online learning where
f would be an infinite stream of training samples.

One example of possible values for f is given by linear predictions with sparse features.
Let us assume X is a random variable with values in Rd and φ : R→ R a random convex
function. Then one can take f(w) := φ(XTw); S (f) would be the same as S (X) defined
as the non zero coordinates of the vector X. The problem given by (4.2) becomes

F∗ = min
w∈Rd

E
[
φ(XTw)

]
. (4.3)

In the case of logistic regression, one would have for instance φ(XTw) = log(1 +
exp−Y XTw) for Y ∈ {−1, 1} the random label associated with the feature vector X.

The convergence properties of SG methods depend on the properties of the Hessian
F ′′ of our objective function F , as we will show in Section 4.3. The closer it is to
identity, the faster SG methods will converge and this convergence will be as fast for
all the coordinates of w. For example, in the case of sparse linear prediction such as
given by (4.3), with binary features X(k) ∈ {0, 1} that are uncorrelated, the Hessian
is such that F ′′(w) = E

[
φ′′(XTw)XXT

]
. If there exist M and m so that we have

∀z ∈ R,m ≤ φ′′(z) ≤M , then we immediately have

∀w ∈ Rd, m(1− pmax)Diag (p) � F ′′(w),
F ′′(w) �M

(
1 +∑

k∈[d] p
(k))Diag (p) .

(4.4)

We notice here that we have a specific structure to the geometry of F which depends
on p and which need to be taken into account. The proof of (4.4) is given in the
supplementary material (Section B.3.4).
Finally, we want not only to solve problems (4.2) or (4.3), but to be able to do so

while using W workers. Those workers can either be running on the same machine with
shared memory or in a distributed fashion.
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4.1.2. Related work

There have been several approaches for parallelizing or distributing SG methods.
Parallelized stochastic gradient descent. This approach described by [Zinkevich

et al., 2010] consists in splitting a dataset in W different parts and averaging the model
obtained by W independent workers. Model averaging always reduces the variance of
the final estimator but the impact on the bias is not as clear. For sparse optimization
this approach does not in practice outperform a purely sequential algorithm [Niu et al.,
2011].
Delayed stochastic gradient descent. The effect of delay for constant step-size

stochastic gradient descent has been studied by [Zinkevich et al., 2009]. Allowing for
delay will remove the need for synchronization and thus limit the overhead when par-
allelizing. The main result of Zinkevich et al. [2009] concludes that there is two dif-
ferent regimes. During the first phase, delay will not help convergence, although once
the asymptotic terms are dominating, a theoretical linear speedup with the number of
worker is recovered.
Using mini-batches is a popular alternative for parallelizing or distributing SGD.

In [Dekel et al., 2012], the reduction of the variance of the gradient estimate is used to
prove improvement in convergence. Our theoretical and practical results show that in
the case of sparse learning, mini-batch do not offer an improvement during the first stage
of optimization. We believe our merging rule is a simple modification of mini-batch SGD
that can considerably improve convergence speed compared to regular mini-batch.

The case of averaged stochastic gradient descent with constant step size for least-
squares regression has been studied in much detail and in that case it is possible to get
an explicit expression for the convergence of the algorithm [Jain et al., 2016]. During the
first phase of optimization, in order to achieve the same accuracy after a given number of
samples, the step size must be increased proportionally to the batch size which is possible
up to a point after which the algorithm will diverge. We draw the same conclusions in
a more generic case in Section 4.3.
In [Li et al., 2014], a specific subproblem is solved instead of just averaging the gra-

dients in a mini-batch. However, solving a subproblem is much more complex to put in
place and requires the tuning of extra parameters. Our method is very simple as it only
requires a per-coordinate rescaling of the gradients and does not require any parameter
tuning.
Hogwild! is a very simple parallel SG method. Each worker processes training

examples completely in parallel, with no synchronization and accessing the same model
in memory [Niu et al., 2011]. The overhead is minimal, however the theoretical analysis
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is complex. New proof techniques have been introduced to tackle those issues [Mania
et al., 2015]. Our contribution here is to make synchronous methods almost as fast as
Hogwild!. This has an interest for cases where Hogwild! cannot perform optimally, for
instance with a mixture of dense and sparse features, or in the distributed setting where
memory cannot be shared. Hogwild! has inspired parallel versions for SDCA, SVRG
and SAGA [Hsieh et al., 2015, Mania et al., 2015, Leblond et al., 2017]. AdaBatch can
similarly be extended to those algorithms and we provide proof for SVRG. Cyclades
[Pan et al., 2016] builds on Hogwild!, assigning training samples to specific workers using
graph theory results to remove conflicts.
Adagrad. Adagrad [Duchi et al., 2011] performs a per coordinate rescaling dependent

on the size of past gradients that has proven to be highly efficient for sparse problem,
besides it can be combined with Hogwild! for parallel optimization [Duchi et al., 2013].
Adagrad rescaling is similar in nature to the one performed by AdaBatch. Adagrad
has a step size going to 0 with the number of iterations which gives good convergence
properties for various problems. On the other hand, AdaBatch works with a wider range
of methods such as SVRG. Constant step size has proven useful for least-mean-square
problems [Bach and Moulines, 2013] or in the field of deep learning [Sutskever et al.,
2013].

4.2. AdaBatch for SGD

In this section, we will focus on constant step size stochastic gradient descent to give
an intuition on how AdaBatch works. AdaBatch can be extended in the same way to
SVRG (see Section 4.5). We assume we are given a starting point w0 ∈ Rd and we define
recursively

∀n > 0, wn = wn−1 − gn, (4.5)

for a sequence gn of stochastic gradient estimates based on independent gradients f ′n,1, . . . , f ′n,B.
We define gmb,n as

∀k ∈ [d], g(k)
mb,n = 1

B

∑
b:k∈S(f)

f ′n,b(wn−1)(k). (4.6)

Plugging (4.6) into (4.5) yields the regular SGD mini-batch algorithm with constant step
size γ and batch size B.

For each iteration n > 0 and dimension k ∈ [d], we denote Dn,k := {b ∈ [B] : k ∈
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S (fn,b)}. We introduce gab,n, the gradient estimate of AdaBatch, as, ∀k ∈ [d],

g
(k)
ab,n =


∑

b∈Dn,k
f ′n,b(wn−1)(k)

|Dn,k| if Dn,k 6= ∅,

0 otherwise.
(4.7)

Instead of taking the average of all gradients, for each coordinate we make an average
but taking only the non zero gradients into account. Let us take a coordinate k ∈ [d];
if p(k) is close to 1, then the AdaBatch update for this coordinate will be the same as
with regular mini-batch with high probability. On the other hand, if p(k) is close to zero,
the update of AdaBatch will be close to summing the gradients instead of averaging
them. Adding updates instead of averaging has been shown to be beneficial in previous
work such as in CoCoa+ [Ma et al., 2015], a distributed SDCA-inspired optimization
algorithm. We observed experimentally that in order to achieve the same performance
with mini-batch compared to AdaBatch, one has to take a step size that is proportional to
B. This will boost convergence for less frequent features but can lead to divergence when
B increases because the gradient for frequent features will get too large. Our method
allows to automatically and smoothly move from summing to averaging depending on
how frequent a feature is.
Let us consider the expectation for those two updates rules, we have to use the expec-

tation of gmb,n and gab,n. We have immediately E [gmb,n] = F ′(wn−1). Thus when using
the regular mini-batch update rule, one obtains an unbiased estimate of the gradient.
The main advantage of mini-batch is a reduction by a factor B of the stochastic noise
near the optimal value, as explained in Section 4.3. With our new rule, using Lemma 1
from the supplementary material (with divisions of probabilites taken element-wise), we
have:

E [gab,n] = Diag
(

1− (1− p)B
p

)
F ′(wn−1). (4.8)

Interestingly, we now have a gradient that is equivalent to a reconditioning of F ′. We can
draw here a parallel with Adagrad [Duchi et al., 2011] which similarly uses per-coordinate
step sizes. When using Adagrad, the update rule becomes

wn = wn−1 − γ(Cadag
n )−1f ′n(wn−1) with

Cadag
n =Diag

(
α−1

√
ε+∑

i∈[n−1](f ′i(wi−1)(k))2
)
k∈[d]

.

The goal is to have an adaptative step size that will have a larger step size for coordinate
for which the gradients have a smaller magnitude. One should note a few differences
though:
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• Adagrad relies on past informations and updates the reconditioning at every it-
eration. It works without any particular requirement on the problem. Adagrad
also forces a decaying step size. Although this give Adagrad good convergence
properties, it is not always suitable, for instance when using variance reduction
methods such as SVRG where the step size is constant.

• On the other side, the AdaBatch scaling stays the same (in expectation) through
time and only tries to exploit the structure coming from the sparsity of the prob-
lem. It does not require storing extra information and can be adapted to other
algorithms such as SVRG or SAGA.

When used together with mini-batch, Adagrad will act similarly to AdaBatch and main-
tain the same sample efficiency automatically even when increasing the batch size.

Deterministic preconditioning. One can see that when B →∞, the reconditioning in
(4.8) goes to Diag (p)−1. One could think of directly scaling the gradient by Diag (p)−1

to achieve a tighter bound in (4.4). However this would make the variance of the gradient
explodes and thus is not usable in practice as shown in Section 4.3. A key feature of
our update rule is stability; because every coordinate of gab,n is an average, there is no
chance it can diverge.
Using directly Diag (p)−1 is not possible, however reconditioning by

CB,p := Diag
(

1− (1− p)B
p

)
(4.9)

when using a mini-batch of size B might just work as it will lead to the same expec-
tation as (4.7). If we define gC,n := CB,pf

′(wn−1), we immediately have E [gC,n] =
CB,pF

′(wn−1). Intuitively, CB,p is getting us as close as possible to the ideal recondi-
tioning Diag (p)−1 leveraging the mini-batch size in order to keep the size of the gradients
under control. Both gC,n and gab,n allow to obtain a very similar performance both in
theory and in practice, so that which version to choose will depend on the specific task to
solve. If it is possible to precompute the probabilities p then one can use gC,n which has
the advantages of not requiring the extra step of counting the features present in a batch.
On the other hand, using gab,n allows to automatically perform the same reconditioning
with no prior knowledge of p.

4.3. Convergence results

We make the following assumptions which generalize our observation from Section 4.1.1
for sparse linear prediction.
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Assumption 1. We assume there exists a convex compact set D ⊂ Rd, µ, L and R

strictly positive so that the following assumptions are satisfied.

1. The Hessians F ′′ (resp. f ′′) of F (resp. f) are such that:

∀w ∈ D, µDiag (p) � F ′′(w) � LDiag (p) , and

∀w ∈ D, f ′′(w) � R2 Id .
(4.10)

2. Let w∗ := arg minw∈D F (w),

F ′(w∗) = 0. (4.11)

In particular, w∗ is a global minimizer of F over Rd.

Those assumptions are easily met in the case of sparse linear predictions. If f(w) :=
φ(XTw), with ∀k ∈ [d], X(k) ∈ {0, 1} uncorrelated, ‖X‖2 ≤ G2 almost surely and
m ≤ φ′′ ≤ M , then the assumptions above are verified for L = M(1 + ∑

k∈[d] p
(k)),

µ = m(1 − pmax), and R2 = G2M . In the case of the logistic loss, M := 1/4 and µ

typically exist on any compact but is not explicitly available. Note though that it is not
required to know µ in order to train any of the algorithms studied here. More details
are given in the supplementary material (Section B.3.4).
Detailed proofs of the following results are given in the supplementary material (Sec-

tion B.3). Our proof technique is based on a variation from the one introduced by
[Needell and Ward, 2016]. It requires an extra projection step on D. In practice how-
ever, we did not require it for any reasonable step size that does not make the algorithm
diverge and our bounds do not depend on D because of (4.11). The results are sum-
marized in Table 4.1. We use a constant step size as a convenience for comparing the
different algorithms. It is different but equivalent to using a decreasing step size (see
[Nesterov and Vial, 2008] just before Corollary 1). For instance, if we know the to-
tal number of iterations is n � 1, taking γ = 6 log(n)

n , the bias term is approximately
µ

4 log(n)n2 . The variance term which is proportional to γ is a O(log(n)/n) which is the
usual rate for strongly convex SGD.

Bias/variance decomposition. We notice that the final error is made of two terms,
one that decreases exponentially fast and measures how quickly we move away from
the starting point and one that is constant, proportional to γ and that depends on the
stochastic noise around the optimal value. We will call the former the bias term and the
latter the variance term, following the terminology introduced by [Bach and Moulines,
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Method FN/B − F∗ γmax

Mini-batch (1− γpminµ/2)N/B δ0
γ +γ 2σ2

B γ
[
Lpmax + 2R2

B

]
≤ 1

AdaBatch (1− γp+B
minµ/2)N/B δ0

γ +2γσ2 γ
[
L+ 2R2] ≤ 1

Diag (p)−1 (1− γµ/2)N/B δ0
γ +γ 2σ2

pminB
γ
[
L+ 2R2

pminB

]
≤ 1

Table 4.1.: Convergence rates for the different methods introduced in Section 4.2.
N represents the total number of samples, so that the number of itera-
tions is N/B; γmax is the maximum step size that guarantees this con-
vergence, σ2 := E

[
‖f ′(w∗)‖2

]
the gradient variance at the optimum, and

∀p ∈ [0, 1], p+B := 1 − (1 − p)B. The Diag (p)−1 method consists in re-
conditioning by Diag (p)−1. Moreover, δ0 := ‖w0 − w∗‖2A where A = Id for
mini-batch SGD, A = Diag

(
p+B/p

)
for AdaBatch and A = Diag (p)−1 for

the last method.

2013]. The bias term decreases exponentially fast and will be especially important during
the early stage of optimization and when µ is very small. The variance term is the
asymptotically dominant term and will prevail when close to the optimum. In practical
applications, the bias term can be the most important one to optimize for [Défossez
and Bach, 2015]. This has also been observed for deep learning, where most of the
optimization is spent far from the optimum [Sutskever et al., 2013].
We immediately notice that rescaling gradients by Diag (p)−1 is infeasible in practice

unless B is taken of the order of p−1
min, because of the exploding variance term and the

tiny step size.

Mini-batch. Let us now study the results for mini-batch SGD. The variance term is
always improved by a factor of B if we keep the same step size. Most previous works
on mini-batch only studied this asymptotic term and concluded that because of this
linear scaling, mini-batch was efficient for parallel optimization [Dekel et al., 2012].
However, when increasing the batch size, the number of iterations is divided by B but
the exponential rate is still the same. The bias term will thus not converge as fast unless
we increase the step size. We can see two regimes depending on B. If B � 2R2

Lpmax
, then

the constraint is γ ≤ B
2R2 . Thus, we can scale γ linearly and achieve the same convergence

for both the variance and bias term as when B = 1. However, if B � 2R2

Lpmax
, then the

constraint is γ ≤ 1
Lpmax

. In this regime, it is not possible to scale up infinitely γ and
thus it is not possible to achieve the same convergence for the bias term as when B = 1.
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We have observed this in practice on some datasets.

AdaBatch. With AdaBatch though, if pmin � 1, then 1−(1−pmin)B ≈ Bpmin. In such
case, the bias term is (1−γBpminµ/2)N/B δ0

γ ≈ (1−γpminµ/2)N δ0
γ , thus showing that we

can achieve the same convergence speed for a given number of samples as when B = 1
as far as the bias term is concerned. The variance term and the maximum step size are
exactly the same as when B = 1. Thus, as long as 1− (1−pmin)B ≈ Bpmin, AdaBatch is
able to achieve at least the same sample efficiency as when B = 1. This is a worst case
scenario, in practice we observe on some datasets an improved efficiency when increasing
B, see Section 4.6. Indeed for rare features the variance of the gradient estimate will
not be decreased with larger batch-size, however for features that are likely to appear
more than once in a batch, AdaBatch will still obtain partial variance reduction through
averaging more than one gradient. Although we do not provide the full proof of this
fact, this is a consequence of Lemma 2 from the supplementary material.

4.4. Wild AdaBatch

We now have a SG method trick that allows us to increase the size of mini-batches while
retaining the same sample efficiency. Intuitively one can think of sample efficiency as
how much information we extract from each training example we process i.e. how much
the loss will decrease after a given number of samples have been processed. Although
it is easy to increase the number of samples processed per seconds when doing parallel
optimization, this will only lead to a true speedup if we can retain the same sample
efficiency as sequential SGD. If the sample efficiency get worse, for instance when using
regular mini-batch, then we will have to perform more iterations to reach the same
accuracy, potentially canceling out the gain obtained from parallelization.
When using synchronous parallel SG methods such as [Dekel et al., 2012], using large

mini-batches allows to reduce the overhead and thus increase the number of samples
processed per second. SGD with mini-batches typically suffers from a lower sample
efficiency when B increases. It has been shown to be asymptotically optimal [Li et al.,
2014, Dekel et al., 2012], however our results summarized in Section 4.3 show that in
cases where the step size cannot be taken too large, it will not be able to achieve the
same sample efficiency as SGD without mini-batch.

We have shown in Section 4.3 that for sparse linear prediction, AdaBatch can achieve
the same sample efficiency as for B = 1. Therefore, we believe it is a better candidate
than regular mini-batch for parallel SGD. In Section 4.6, we will present our experimental
results for Wild AdaBatch, a Hogwild! inspired, synchronous SGD algorithm. Given a
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batch size B and W workers, they will first compute in parallel B gradients, wait for
everyone to be done and then apply the updates in parallel to update wn. The key
advantage here is that thanks to the synchronization, analysis of this algorithm is easier.
We have a clear sequence of iterates wn in memory and there is no delay or inconsistent
read. It is still possible that during the update phase, some updates will be dropped
because of overlapping writes to memory, but that can be seen simply as a slight decrease
of the step size for those coordinate. In practice, we did not notice any difference with
the sequential version of AdaBatch.

4.5. AdaBatch for SVRG

SVRG [Johnson and Zhang, 2013] is a variance-reduced SG method that has a linear rate
of convergence on the training error when F is given by a finite mean of functions F :=
1
N

∑
i∈[N ] fi. This is equivalent to f following the uniform law over the set {f1, . . . , fN}.

SVRG is able to converge with a constant step size. To do so, it replaces the gradient
f ′(w) by f ′(w) − f ′(y) + F ′(y) where y is updated every epoch (an epoch being m

iterations where m is a parameter to the algorithm, typically of the order of the number
of training samples). Next, we show the difference between regular mini-batch SVRG
and AdaBatch SVRG and give theoretical results showing improved convergence for the
latter.
We now only assume that F verifies the following inequalities for µ > 0, almost surely,

∀w ∈ Rd, µDiag (p) � F ′′(w) and f(w) � LDiag (p) . (4.12)

Let us take a starting point y0 ∈ Rd and m ∈ N∗. For all s = 0, 1, . . ., we have
ws,0 := ys and for all n ∈ [m] let us define

ws,n := ws,n−1 − γgs,n, ys+1 := 1
m

∑
n∈[m]

ws,n,

with gs,n the SVRG update based on (fs,n,b)b∈[B] i.i.d. samples of f . Let us introduce

∀k ∈ [d], D(k)
s,n :=

{
b ∈ [B] : k ∈ S

(
f ′s,n,b

)}
.

For any dimension k such that D(k)
s,n 6= ∅ we have

g(k)
s,n := 1

C
(k)
s,n

( ∑
b∈D(k)

s,n

f ′s,n,b(ws,n−1)(k) − f ′s,n,b(ys)(k) + F ′(ys)(k)/p(k)
)
,
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and forD(k)
s,n = ∅ we take g(k)

s,n := 0. Regular mini-batch SVRG is recovered for C(k)
s,n := B.

On the other hand, AdaBatch SVRG is obtained for C(k)
s,n :=

∣∣∣D(k)
s,n

∣∣∣. One can note that
we used a similar trick to the one in [Mania et al., 2015] in order to preserve the sparsity
of the updates.
For both updates, there exists a choice of γ and m such that

E [F (ys)− F∗] ≤ 0.9s(F (y0)− F∗).

For regular mini-batch, it is provably sufficient to take γmb = 1
L and mmb ≈ 2.2L

pminµ
. For

AdaBatch, we have γab = 1
10L and mab ≈ 20L

Bpminµ
. We notice that as we increase the

batch size, we require the same number of inner iterations when using regular mini-batch
update. However, each update requires B times more samples as when B = 1. On the
other hand when using AdaBatch, mab is inversely proportional to B so that the total
number of samples required to reach the same accuracy is the same as when B = 1. We
provide detailed results and proofs in the supplementary material (Section B.4). Note
that similar results should hold for epoch-free variance-reduced SG methods such as
SAGA [Defazio et al., 2014].

4.6. Experimental results

We have implemented both Hogwild! and Wild AdaBatch and compared them on three
datasets, spam1, news20 2, and url [Ma et al., 2009]. Spam has 92,189 samples of di-
mension 823,470 and an average of 155 active features per sample. News20 has 19,996
samples of dimension 1,355,191 and an average of 455 active features per example. Fi-
nally, url has 2,396,130 samples of dimension 3,231,961 and an average of 115 active
features per example.
We implemented both in C++ and tried our best to optimize both methods. We ran

them on an Intel(R) Xeon(R) CPU E5-2680 v3 @ 2.50GHz with 24 CPUs divided in two
sockets. Each socket contains 12 physical CPUs for 24 virtual ones. In our experiments
though, it is better to keep the number of threads under the number of actual physical
CPUs on a single socket. We restricted each experiment to run on a single socket in
order to prevent NUMA (non uniform memory access) issues. For all the experiments
we ran (and all methods), we perform a grid search to optimize the step size (or the
main parameter of Adagrad). We then report the test error on a separate test set.
Wild AdaBatch. We trained each algorithm for logistic regression with 5 passes

over the dataset, 1 pass only in the case of url. We normalized the features so that each
1http://plg.uwaterloo.ca/~gvcormac/trecspamtrack05/trecspam05paper.pdf
2https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html
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sample has norm 1. For each dataset, we evaluate 3 methods: Wild AdaBatch (AB)
and Wild mini-batch SGD (MB, the same as AB but with the regular average of the
gradients) as well as Hogwild! (HW) for various numbers of workers W . For AdaBatch
and mini-batch SGD, the batch size is set to B = 10W for news20 and B = 50 for
url and spam which was giving a better speedup for those datasets. We take W going
from 1 to 12, which is the maximum number of physical CPUs on a single socket on our
machine. We also evaluate purely sequential SGD without mini-batch (SEQ).

We only present here the result for news20. The figures for the other datasets can be
found in the supplementary material Section B.5. In Figure 4.1 we show the convergence
as a function of the wall-clock time. In Figure 4.3, we give the wall-clock time to reach
a given test error (where our method is achieving close to a linear speed-up) and the
number of processed samples per seconds. On news20, the gain in sample efficiency
actually allows Wild AdaBatch to reach the goal the fastest, even though Wild AdaBatch
can process less samples per seconds than Hogwild!, thanks to its improved sampled
efficiency.

Comparison with Adagrad. We compare AdaBatch with Adagrad for various
batch-size on Figure 4.4 when trained with a fixed number of samples, so that when
B increases, we perform less iterations. On the url dataset, Adagrad performs signif-
icantly better than AdaBatch, however we notice that as the batch-size increases, the
gap between AdaBatch and Adagrad reduces. On the spam dataset with the least-mean-
square loss, constant step size SGD performs better than Adagrad. We believe this is
because Adagrad is especially well suited for non strictly convex problems. For strictly
convex problem though, constant step size SGD is known to be very efficient [Bach and
Moulines, 2013]. We also plotted the performance of constant step size regular mini-
batch SGD. In all cases, regular mini-batch scales very badly as the batch size increases.
We fine tune the step size for each batch size and observed the regular mini-batch will
take a larger step size for small batch sizes, that allows to keep roughly the same final
test error. However, when the batch size increases too much, this is no longer possible as
it makes optimization particularly unstable, thus leading to a clear decrease in sample
efficiency. Finally, AdaBatch can even improve the sample complexity when increasing
B. We believe this comes from the variance reduction of the gradient for features that
occurs more than once in a mini-batch, which in turn allows for a larger step size.

SVRG. We also compared the effect of AdaBatch on SVRG. On Figure 4.2 we show
the training gap FN − F ∗ on url for the log loss with a small L2 penalty. This penalty
is given by 10−4

2 ‖w‖2diag(p), chosen to respect our hypothesis and to prevent overfitting
without degrading the testing error. All the models are trained with 10 iterations over all
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the samples in the dataset, so that if B is larger, the model will perform less iterations.
We observe that as we increase the batch size, the sample efficiency of regular mini-
batch deteriorates. The variance reduction coming from using a larger mini-batch is not
sufficient to compensate the fact that we perform less iterations, even when we increase
the step size. On the other hand, AdaBatch actually allows to improve the sample
efficiency as it allows to take a larger step size thanks to the gradient variance reduction
for the coordinates with p(k)B large enough. To the best of ourknowledge, AdaBatch
is the first mini-batch aggregation rule that is both extremely simple and allows for a
better sample efficiency than sequential SGD.

4.7. Conclusion

We have introduced a new way of merging gradients when using SG methods with mini-
batches. We have shown both theoretically and experimentally that this approach allows
to keep the same sample efficiency as when not using any mini-batch and sometimes even
improve it. Thanks to this feature, AdaBatch allowed us to make synchronous parallel
SG methods competitive with Hogwild!. Our approach can extend to any SG methods
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including variance-reduced methods. Although not explored yet, we also believe that
AdaBatch is promising for distributed optimization. In such a case, memory is no longer
shared so that Hogwild! cannot be used. Distributed mini-batch or SGD with delay
have been used in such case [Dekel et al., 2012, Zinkevich et al., 2009]; AdaBatch is a
few line change for distributed mini-batch which could vastly improve the convergence
of those methods.

89





5. On the Convergence of Adam and
Adagrad

Abstract

We provide a simple proof of the convergence of the optimization algorithms Adam and
Adagrad with the assumptions of smooth gradients and almost sure uniform bound on
the `∞ norm of the gradients. This work builds on the techniques introduced by Ward
et al. [2019] and extends them to the Adam optimizer. We show that in expectation, the
squared norm of the objective gradient averaged over the trajectory has an upper-bound
which is explicit in the constants of the problem, parameters of the optimizer and the
total number of iterations N . This bound can be made arbitrarily small. In particular,
Adam with a learning rate α = 1/

√
N and a momentum parameter on squared gradients

β2 = 1 − 1/N achieves the same rate of convergence O(ln(N)/
√
N) as Adagrad. Thus,

it is possible to use Adam as a finite horizon version of Adagrad, much like constant
step size SGD can be used instead of its asymptotically converging decaying step size
version.

5.1. Introduction

First order methods with adaptive step sizes have proved useful in many fields of machine
learning, be it for sparse optimization [Duchi et al., 2013], tensor factorization [Lacroix
et al., 2018] or deep learning [Goodfellow et al., 2016].
Adagrad [Duchi et al., 2011] rescales each coordinate by a sum of squared past gradient

values. While Adagrad proved effective for sparse optimization [Duchi et al., 2013],
experiments showed that it under-performed when applied to deep learning [Wilson et al.,
2017]. The large impact of past gradients prevents it from adapting to local changes in
the smoothness of the function. With RMSProp, Tieleman and Hinton [2012] proposed
an exponential moving average instead of a cumulative sum to forget past gradients.
Adam [Kingma and Ba, 2014], currently one of the most popular adaptive algorithms in
deep learning, built upon RMSProp and added corrective term to the step sizes at the
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beginning of training, together with heavy-ball style momentum.

In the online convex optimization setting, Adagrad was shown to achieve minimal
regret for online convex optimization [Duchi et al., 2011]. In the original Adam paper,
Kingma and Ba [2014] offered a proof that it would converge to the optimum with a
step size decaying as O(1/

√
N) where N is the number of iterations, even though this

proof was later questioned by Reddi et al. [2019]. In the non-convex setting, Ward et al.
[2019] showed convergence with rate O(ln(N)/

√
N) to a critical point for the scalar,

i.e., single step size, version of Adagrad. Zou et al. [2019b] extended this proof to the
vector case, while Zou et al. [2019a] proved the convergence of Adam when the decay of
the exponential moving average scales as 1− 1/N and the learning rate scales as 1/

√
N .

Moreover, compared to plain stochastic gradient descent, adaptive algorithms are known
to be less sensitive to hyperparameter setting. The theoretical results above confirm this
observation by showing the convergence for a step size parameter that does not depend
on the regularity parameters of the objective function or the bound on the variance of
the stochastic gradients.

In this chapter, we present a new proof of convergence to a critical point for Adagrad
and Adam for stochastic non-convex smooth optimization, under the assumptions that
the stochastic gradients of the iterates are almost surely bounded. These assumptions are
weaker and more realistic than those of prior work on these algorithms. In particular, we
show for a fully connected feed forward neural networks with sigmoid activation trained
with `2 regularization, the iterates of Adam or Adagrad almost surely stay bounded,
which in turn implies a bound on the stochastic gradient as long as the training input data
is also bounded. We recover the standard O(ln(N)/

√
N) convergence rate for Adagrad

for all step sizes, and the same rate with Adam with an appropriate rescaling of the
step sizes and decay parameters. Compared to previous work, our bound significantly
improves the dependency on the momentum parameter β1. The best know bounds for
Adagrad and Adam are respectively in O((1 − β1)−3) and O((1 − β1)−5) (see Section
5.3), while our result is in O((1− β1)−1) for both algorithms.

Another important contribution of this work is a significantly simpler proof than
previous ones. The reason is that in our approach, the main technical steps are carried
out jointly for Adagrad and Adam with constant parameters, while previous attempts
at unified proofs required varying parameters through the iterations [Chen et al., 2019,
Zou et al., 2019a,b].

The precise setting and assumptions are stated in the next section, and previous work
is then described 5.3. Next, we discuss the relevance of our assumptions in the context
of deep learning using containment arguments inspired by Bottou [1999]. The main
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theorems are presented in Section 5.5, followed by a full proof for the case without
momentum in Section 5.6. The full proof of the convergence with momentum is deferred
to the supplementary material.

5.2. Setup

5.2.1. Notation

Let d ∈ N be the dimension of the problem and take [d] = {1, 2, . . . , d}. Given a function
h : Rd → R, we note ∇h its gradient and ∇ih the i-th component of the gradient. In
this chapter, ε represents a small constant, e.g., 10−8, used for numerical stability. Given
a sequence (un)n∈N with ∀n ∈ N, un ∈ Rd, we note un,i for n ∈ N and i ∈ [d] the i-th
component of the n-th element of the sequence.

We want to optimize a function F : Rd → R. We assume there exists a random
function f : Rd → R such that E [∇f(x)] = ∇F (x) and that we have access to an oracle
providing i.i.d. samples (fn)n∈N∗ . In machine learning, x ∈ Rd typically represents the
weights of a linear or deep model, f represents the loss from individual training examples
or minibatches, and F is the full training objective function. The goal is to find a critical
point of F .

5.2.2. Adaptive methods

We study a family of algorithms that covers both Adagrad [Duchi et al., 2011] and
Adam [Kingma and Ba, 2014]. We assume we have an infinite stream (fn)n∈N∗ of
i.i.d. copies of f , 0 ≤ β2 ≤ 1 and 0 ≤ β1 < β2, and a non negative sequence (αn)n∈N∗ .

Given x0 ∈ Rd our starting point and m0 = 0, v0 = 0, we iterate, for every n ∈ N∗,

mn,i = β1mn−1,i +∇ifn(xn−1) (5.1)
vn,i = β2vn−1,i + (∇ifn(xn−1))2 (5.2)

xn,i = xn−1,i − αn
mn,i√
ε+ vn,i

. (5.3)

The real number β1 is a heavy-ball style momentum parameter [Polyak, 1964], while β2

controls the rate at which the scale of past gradients is forgotten.
Taking β1 = 0, β2 = 1 and αn = α gives Adagrad. While the original Adagrad

algorithm [Duchi et al., 2011] did not include a heavy-ball-like momentum, our analysis
also applies to the case β1 > 0. On the other hand, when 0 < β2 < 1, 0 ≤ β1 < β2,
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taking

αn = α(1− β1)

√√√√n−1∑
j=0

βj2, (5.4)

leads to an algorithm close to Adam. Indeed, the step size in (5.4) is rescaled based on
the number of past gradients that were accumulated. This is equivalent to the correction
performed by Adam, which compensates for the possible smaller scale of vn when only
few gradients have been accumulated.1 When there is no momentum (β1 = 0) the
only difference with Adam is that ε in (5.3) is outside the square root in the original
algorithm. When β1 > 0, an additional difference is that we do not compensate for mn

being smaller during the first few iterations.
The slight difference in step size when β1 > 0 simplifies the proof at a minimum

practical cost: the first few iterations of Adam are usually noisy, in particular due to vn
having seen few samples, and (5.4) is equivalent to taking a smaller step size during the
first 1

1−β1
iterations. Since Kingma and Ba [2014] suggested a default value of β1 = 0.9,

our update rule differs significantly from the original Adam only during the first few tens
of iterations.

5.2.3. Assumptions

We make four assumptions. We first assume F is bounded below by F∗, that is,

∀x ∈ Rd, F (x) ≥ F∗. (5.5)

We assume the iterates are contained within an `∞ ball almost surely,

∀n ∈ N, ‖xn‖∞ ≤ B a.s.. (5.6)

We then assume the `∞ norm of the stochastic gradients is almost surely bounded over
this ball: for all x ∈ Rd such that ‖x‖∞ ≤ B,

‖∇f(x)‖∞ ≤ R−
√
ε a.s., (5.7)

and finally, the smoothness of the objective function over this ball, e.g., its gradient is L-
Liptchitz-continuous with respect to the `2-norm: for all x, y ∈ Rd such that ‖x‖∞ ≤ B
and ‖y‖∞ ≤ B,

‖∇F (x)−∇F (y)‖2 ≤ L ‖x− y‖2 . (5.8)
1Adam updates are usually written αn = α(1−β1)

√
1− βn

2 and vn,i = β2vn−1,i+(1−β1) (∇ifn(xn−1))2.
These are equivalent to ours because the factor (1 − β1) is transfered to a multiplication of αn by
1/
√

1− β2. The same apply to mn.
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Note that, if F is L-smooth over Rd and the stochastic gradients are uniformly almost
surely bounded over Rd, then one can take B = ∞, and (5.6) is then verified. This
case matches more usual assumptions, but it is rarely met in practice, as explained in
Section 5.3. However, note that (5.6) is verified with B < ∞ for some cases of deep
neural network training, as proven in Section 5.4.

5.3. Related work

Work on adaptive optimization methods started with the seminal papers of McMa-
han and Streeter [2010] and Duchi et al. [2011]. They showed that adaptive methods
like Adagrad achieve an optimal rate of convergence of O(1/

√
N) for convex optimiza-

tion [Agarwal et al., 2009]. Practical experiences with training deep neural networks led
to the development of adaptive methods using an exponential moving average of past
squared gradients like RMSProp [Tieleman and Hinton, 2012] or Adam [Kingma and
Ba, 2014].
Kingma and Ba [2014] claimed that Adam with decreasing step sizes converges to an

optimal solutions for convex objectives. However, the proof contained a mistake spotted
by Reddi et al. [2019], who also gave examples of convex problems where Adam does
not converge to an optimal solution. They proposed AMSGrad as a convergent variant
of Adam, which consisted in retaining the maximum value of the exponential moving
average. The examples given by Reddi et al. [2019] illustrate a behavior of Adam that is
coherent with our results and previous work [Zou et al., 2019a], because they use a small
exponential decay parameter β2 < 1/5. Under our assumptions, Adam with constant β2

is guaranteed to not diverge, but it is not guaranteed to converge to a stationary point.
Regarding the non-convex setting, Li and Orabona [2019] showed the convergence of

Adagrad for the non-convex case but under unpractical conditions, in particular the step
size α should verify α ≤

√
ε/L. Ward et al. [2019] showed the convergence of a variant of

Adagrad (in the sense of the expected squared norm at a random iterate) for any value of
α, but only for the “scalar” version of Adagrad, with a rate of O(ln(N)/

√
N). While our

approach builds on this work, we significantly extend it to apply to both Adagrad and
Adam, in their coordinate-wise version used in practice, while also supporting heavy-ball
momentum.
Zou et al. [2019b] showed the convergence of Adagrad with either heavy-ball or Nes-

terov style momentum. We recover a similar result for Adagrad with heavy-ball momen-
tum, under different but interchangeable hypotheses, as explained in Section 5.5.2. Their
proof technique work with a variety of averaging scheme for the past squared gradients,
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including Adagrad. In that case, we obtain the same rate as them as a function of N
(i.e., O(ln(N)/

√
N)), but we improve the dependence on the momentum parameter β1

from O((1−β1)−3) to O((1−β1)−1). Chen et al. [2019] also present bounds for Adagrad
and Adam, without convergence guarantees for Adam. The dependence of their bounds
in β1 is worse than that of Zou et al. [2019b].
Zou et al. [2019a] propose unified convergence bounds for Adagrad and Adam. We

recover the same scaling of the bound with respect to α and β2. However their bound
has a dependency in O((1− β1)−5) with respect to β1, while we prove O((1− β1)−1), a
significant reduction.
In previous work [Zou et al., 2019a,b], the assumption given by (5.7) is replaced by

∀x ∈ Rd, E
[
‖∇f(x)‖22

]
≤ R2. (5.9)

First, notice that we assume an almost sure bound instead of a bound on the expectation
of the squared stochastic gradients. The almost sure bound is a stronger requirement
but it gives a stronger convergence result, namely a bound on the expected norm of
the full gradient at the iterates taken to the power 2 instead of 4/3, as explained in
Section 5.5.2. The proof remains mostly identical whether we assume an almost sure
bound or bound in expectation of the squared stochastic gradients. Given that for a
fixed x ∈ Rd, the variance of the stochastic gradients for machine learning models comes
from the variance of the training data, going from a bound in expectation of the squared
gradients to an almost sure bound is easily accomplished by the removal of outliers in
the training set.

Second, assumption (5.9) rarely hold in practice as it assume boundness of the gradient
over Rd. It is not verified by any deep learning network with more than one layer, linear
regression, nor logistic regression with `2 regularization. In fact, a deep learning network
with two layers is not even L-smooth over Rd, as the norm of the gradient for the first
layer is multiplied by the norm of the gradient for the second layer. We show in the next
section that for deep neural networks with sigmoid activations and `2 regularization, (5.6)
is verified, as long as the data in the training set is bounded, which implies both (5.7)
and (5.8).

5.4. Containment of the iterates

Following Bottou [1999] we show in this section that (5.6) is verified for a fully connected
feed forward neural network with sigmoid activations and `2 regularization. The goal
of this section is to show that there is an upper-bound on the weights of this neural
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network when trained with Adam or Adagrad even though the bound we obtain grows
super exponentially with the depth.
We assume that β1 = 0 for simplicity, so that for any iteration n ∈ N∗ and coordinate

i ∈ [d], mn,i = ∇ifn(xn−1). We assume x ∈ Rd is the concatenation of [w1w2 . . . wl],
where l is the number of layers and for all s ∈ [l], ws ∈ Rcs×cs−1 is the weight of the s-th
layer, c0 being the dimension of the input data. For clarity, we assume cl = 1, i.e. the
neural network has a single output. The fully connected network is represented by the
function,

∀z ∈ Rc0 , h(x, z) = σ(wlσ(wl−1 . . . σ(w1z))).

Then, the stochastic objective function is given by,

f(x) = D(h(x, Z), Y ) + λ

2 ‖x‖
2
2 ,

where Z is a random variable over Rc0 representing the input training data, Y is the label
over a set Y, D is the loss function, and λ the `2 regularization parameter. We assume
that the `∞ norm of Z is almost surely bounded by 1 and that for any label y ∈ Y,
|D′(·, y)| ≤ M ′. This is verified for the Huber loss, or the cross entropy loss. When
writing D′, we always mean its derivative with respect to its first argument. Finally, we
note os(x, z) the output of the s-th layer, i.e.

∀s ∈ [l], os(x, z) = σ(wsσ(ws−1 . . . σ(w1z))),

and o0(x, z) = z. In particular, ‖os(x, z)‖∞ ≤ 1.
We will prove the bound on the iterates through induction, starting the output layer

and going backward up to the input layer. We assume all the weights are initialized with
a size much smaller than the bound we will derive.

5.4.1. Containment of the last layer

In the following, ∇w is the Jacobian operator with respect to the weights of a specific
layer w. Taking the derivative of f(x) with respect to wl, we get,

∇wl
D(h(x, Z), Y ) = D′(h(x, Z), Y )∇wl

h(x, Z)
= D′(h(x, Z), Y )σ′(wsol−1)ol−1.

Given that σ′ ≤ 1/4, we have,

‖∇wl
D(h(x, Z), Y )‖∞ ≤

M ′

4 . (5.10)
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Updates of Adam or Adagrad are bounded For any iteration n ∈ N∗, we have for
Adam αn ≤ α√

1−β2
and for Adagrad αn ≤ α. We note A = maxn∈N∗ αn. Besides, for

any coordinate i ∈ [d], we have |mn,i| ≤
√
vn,i, so that

‖xn − xn−1‖∞ ≤ A (5.11)

Bound on wl Let us assume that there exist n0 ∈ N∗ and a coordinate i corresponding
to a weight of the last layer, such that xn0,i ≥ M ′

4λ +A. Given (5.10), we have,

∇if(xn0) ≥ −M
′

4 + λ
M ′

4λ ≥ 0.

Thus mn0,i ≥ 0 and using (5.11),

0 ≤ wn0−1,i −A ≤ wn0,i ≤ wn0−1,i,

so that |xn0,i| ≤ xn0−1,i. So if at any point xn−1,i goes over M ′

4λ + A, the next iterates
decrease until they go back below M ′

4λ + A. Given that the maximum increase between
two update is A, it means we have for any iteration n ∈ N∗, and for any coordinate i
corresponding to a weight of the last layer,

xn,i ≤
M ′

4λ + 2A.

Applying the same technique we can show that xn,i ≥ −M ′

4λ − 2A and finally,

|xl,i| ≤
M ′

4λ + 2A.

In particular, this implies that the Frobenius norm of the weight of the last layer wl
stays bounded for all the iterates.

5.4.2. Containment of the previous layers

Now taking a layer s ∈ [l − 1], we have,

∇wsD(h(x, Z), Y ) =

D′(h(x, Z, Y ))
(
s+1∏
k=l

σ′(ok−1)wk
)
os−1.

Let us assume we have shown that for layers k > s, ‖wk‖F ≤ Mk, then we can
immediately derive that the above gradient is bounded in `∞ norm. Applying the same
method as in 5.4.1, we can then show that the weights ws stay bounded as well, with
respect to the `∞ norm, by M ′

∏
k>s

Mk

4l−s+1 + 2A. Thus, by induction, we can show that the
weights of all layers stay bounded for all iterations, albeit with a bound growing more
than exponentially with depth.
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5.5. Main results

For any total number of iterations N ∈ N∗, we define τN a random index with value in
{0, . . . , N − 1}, verifying

∀j ∈ N, j < N,P [τ = j] ∝ 1− βN−j1 . (5.12)

If β1 = 0, this is equivalent to sampling τ uniformly in {0, . . . , N − 1}. If β1 > 0, the
last few 1

1−β1
iterations are sampled rarely, and all iterations older than a few times

that number are sampled almost uniformly. All our results bound the expected squared
norm of the total gradient at iteration τ , which is standard for non convex stochastic
optimization [Ghadimi and Lan, 2013].

5.5.1. Convergence bounds

For simplicity, we first give convergence results for β1 = 0, along with a complete proof
in Section 5.6.1 and Section 5.6.2. We show convergence for any β1 < β2, however the
theoretical bound is always worse than for β1 = 0, while the proof becomes significantly
more complex. Therefore, we delay the complete proof with momentum to the Appendix,
Section C.5. We still provide the results with momentum in the second part of this
section. Note that the disadvantageous dependency of the bound on β1 is not specific to
our proof but can be observed in previous adaptive methods bounds [Chen et al., 2019,
Zou et al., 2019b].

Theorem 1 (Convergence of Adam without momentum). Given the assumptions in-
troduced in Section 5.2.3, the iterates xn defined in Section 5.2.2 with hyper-parameters
verifying 0 < β2 < 1, αn =

√∑n−1
j=0 β

j
2α with α > 0 and β1 = 0, we have for any N ∈ N∗,

taking τ defined by (5.12),

E
[
‖∇F (xτ )‖2

]
≤ 2RF (x0)− F∗

αN
+

C

(
1
N

ln
(

1 + R2

(1− β2)ε

)
− ln(β2)

)
, (5.13)

with

C = 4dR2
√

1− β2
+ αdRL

1− β2
.

Theorem 2 (Convergence of Adagrad without momentum). Given the assumptions
introduced in Section 5.2.3, the iterates xn defined in Section 5.2.2 with hyper-parameters

99



verifying β2 = 1, αn = α with α > 0 and β1 = 0, we have for any N ∈ N∗, taking τ as
defined by (5.12),

E
[
‖∇F (xτ )‖2

]
≤ 2RF (x0)− F∗

α
√
N

+

1√
N

(
4dR2 + αdRL

)
ln
(

1 + NR2

ε

)
. (5.14)

Theorem 3 (Convergence of Adam with momentum). Given the assumptions introduced
in Section 5.2.3, the iterates xn defined in Section 5.2.2 with hyper-parameters verifying
0 < β2 < 1, αn = (1 − β1)

√∑n−1
j=0 β

j
2α with α > 0 and 0 ≤ β1 < β2, we have for any

N ∈ N∗ such that N > β1
1−β1

, taking τ defined by (5.12),

E
[
‖∇F (xτ )‖2

]
≤ 2RF (x0)− F∗

αÑ
+

C

(
1
Ñ

ln
(

1 + R2

(1− β2)ε

)
− N

Ñ
ln(β2)

)
, (5.15)

with
Ñ = N − β1

1− β1
,

and,

C = αdRL(1− β1)
(1− β1/β2)(1− β2)+

12dR2√1− β1
(1− β1/β2)3/2√1− β2

+

2α2dL2β1
(1− β1/β2)(1− β2)3/2 . (5.16)

Theorem 4 (Convergence of Adagrad with momentum). Given the assumptions intro-
duced in Section 5.2.3, the iterates xn defined in Section 5.2.2 with hyper-parameters
verifying β2 = 1, αn = α with α > 0 and 0 ≤ β1 < 1, we have for any N ∈ N∗ such that
N > β1

1−β1
, taking τ as defined by (5.12),

E
[
‖∇F (xτ )‖2

]
≤ 2R

√
N
F (x0)− F∗

αÑ
+

√
N

Ñ
C ln

(
1 + NR2

ε

)
, (5.17)

with
Ñ = N − β1

1− β1
, (5.18)

and,

C =
(
αdRL+ 12dR2

1− β1
+ 2α2dL2β1

1− β1

)
. (5.19)
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5.5.2. Analysis of the bounds

Depencency in d. Looking at bounds introduced in the previous section, one can notice
the presence of two terms: the forgetting of the initial condition, proportional to F (x0)−
F∗, and a second term that scales as d. The scaling as d is inevitable given our hypothesis,
in particular the use of a bound on the `∞-norm of the gradients. Indeed, for any bound
valid for a function F1 with d = 1, then we can build a new function Fd = ∑

i∈[d] F1(xi),
i.e., we replicate d times the same optimization problem. The Hessian of Fd is diagonal
with each diagonal element being the same as the Hessian of F1, thus the smoothness
constant is unchanged, nor is the `∞ bound on the stochastic gradients. Each dimension
is independent from the other and equivalent to the single dimension problem given by
F1, thus E

[
‖∇Fd(xτ )‖22

]
scales as d.

Almost sure bound on the gradient. We chose to assume the existence of an almost
sure `∞-bound on the gradients given by (5.7). We use it only in (5.39) and (5.41). It
is possible instead to use the Hölder inequality, which is the choice made by Ward et al.
[2019] and Zou et al. [2019b]. This however deteriorate the bound, instead of a bound
on E

[
‖∇F (xτ )‖22

]
, this would give a bound on E

[
‖∇F (xτ )‖4/3

2

]2/3
. We also used the

bound on the gradient in Lemma 5.1, to obtain (5.32) and (5.35), however in that case,
a bound on the expected squared norm of the gradients is sufficient.

Impact of heavy-ball momentum. Looking at Theorems 3 and 4, we see that increasing
β1 always deteriorate the bound. Taking β1 = 0 in those theorems gives us almost exactly
the bound without heavy-ball momentum from Theorems 1 and 2, up to a factor 3 in
the terms of the form dR2. As discussed in the related work, Section 5.3, we significantly
improve the dependency in (1−β1)−1, compared with previous work [Zou et al., 2019b,a].
We provide a more detailed analysis in the Appendix, Sections C.

5.5.3. Optimal finite horizon Adam is Adagrad

Let us take a closer look at the result from Theorem 1. It might seem like some quantities
might explode but actually not for any reasonable values of α, β2 and N . Let us assume
ε� R, α = N−a and β2 = 1−N−b. Then we immediately have

1
RN

N∑
n=1

E
[
‖∇F (x)‖2

]
≤ F (x0)− F∗

N1−a +

C

(
1
N

ln
(
R2N b

ε

)
+N−b

)
, (5.20)
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with
C = dRN b/2 + LN b−a

2 . (5.21)

Putting those together and ignoring the log terms for now,

1
RN

N∑
n=1

E
[
‖∇F (x)‖2

]
/
F (x0)− F∗
N1−a +

dRN b/2−1 + dRN−b/2 + L

2N
b−a−1 + L

2N
−a. (5.22)

The best overall rate we can obtain is O(1/
√
N), and it is only achieved for a = 1/2 and

b = 1, i.e., α = α1/
√
N and β2 = 1−1/N . We can see the resemblance between Adagrad

and Adam with a finite horizon and such parameters, as the exponential moving average
for the denominator has a typical averaging window length of N . In particular, the
bound for Adam now becomes

1
RN

N∑
n=1

E
[
‖∇F (x)‖2

]
≤ F (x0)− F∗

α1
√
N

+

1√
N

(
dR+ αdL

2

)(
ln
(

1 + RN

ε

)
+ 1

)
, (5.23)

which differ from (5.14) only by a +1 next to the log term.

Adam and Adagrad are twins. We discovered an important fact from the bounds we
introduced in Section 5.5.1: Adam is to Adagrad like constant step size SGD is to decay-
ing step size SGD. While Adagrad is asymptotically optimal, it has a slower forgetting
of the initial condition F (x0) − F∗, as 1/

√
N instead of 1/N for Adam. Furthermore,

Adam adapts to local change of the smoothness faster than Adagrad as it eventually
forgets about past gradients. This fast forgetting of the initial condition and improved
adaptivity comes at a cost as Adam does not converge. It is however possible to chose
parameters α and β2 as to achieve an ε critical point for ε arbitrarily small and in par-
ticular, for a known time horizon, they can be chosen to obtain the exact same bound
as Adagrad.

5.6. Proofs for β1 = 0 (no momentum)

We assume here for simplicity that β1 = 0, i.e., there is no heavy-ball style momentum.
The recursions introduced in Section 5.2.2 can be simplified into

vn,i = β2vn−1,i + (∇ifn(xn−1))2 (5.24)

xn,i = xn−1,i − αn
∇ifn(xn−1)
√
ε+ vn,i

. (5.25)
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Throughout the proof we note by En−1 [·] the conditional expectation with respect
to f1, . . . , fn−1. In particular, xn−1, vn−1 is deterministic knowing f1, . . . , fn−1. For all
n ∈ N∗, we also define ṽn ∈ Rd so that for all i ∈ [d],

ṽn,i = β2vn−1,i + En−1
[
(∇ifn(xn))2

]
, (5.26)

i.e., ṽn is obtained from vn by replacing the last gradient contribution by its expected
value knowing f1, . . . , fn−1.

5.6.1. Technical lemmas

A problem posed by the update in (5.25) is the correlation between the numerator and
denominator. This prevents us from easily computing the conditional expectation and
as noted by Reddi et al. [2019], the expected direction of update can have a positive dot
product with the objective gradient. It is however possible to control the deviation from
the descent direction, following Ward et al. [2019] with this first lemma.

Lemma 5.1 (adaptive update approximately follow a descent direction). For all n ∈ N∗

and i ∈ [d], we have:

En−1

[
∇iF (xn−1)∇ifn(xn−1)

√
ε+ vn,i

]
≥

(∇iF (xn−1))2

2
√
ε+ ṽn,i

− 2REn−1

[
(∇ifn(xn−1))2

ε+ vn,i

]
. (5.27)

Proof. We take i ∈ [d] and note G = ∇iF (xn−1), g = ∇ifn(xn−1), v = vn,i and ṽ = ṽn,i.

En−1

[
Gg√
ε+ v

]
= En−1

[
Gg√
ε+ ṽ

]
+ En−1

[
Gg

( 1√
ε+ v

− 1√
ε+ ṽ

)
︸ ︷︷ ︸

A

]
. (5.28)

Given that g and ṽ are independent given f1, . . . , fn−1, we immediately have

En−1

[
Gg√
ε+ ṽ

]
= G2
√
ε+ ṽ

. (5.29)
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Now we need to control the size of A,

A = Gg
ṽ − v√

ε+ v
√
ε+ ṽ(

√
ε+ v +

√
ε+ ṽ)

= Gg
En−1

[
g2]− g2

√
ε+ v

√
ε+ ṽ(

√
ε+ v +

√
ε+ ṽ)

|A| ≤ |Gg| En−1
[
g2]

√
ε+ v(ε+ ṽ)︸ ︷︷ ︸
κ

+ |Gg| g2

(ε+ v)
√
ε+ ṽ︸ ︷︷ ︸

ρ

,

the last inequality coming from the fact that
√
ε+ v +

√
ε+ ṽ ≥ max(

√
ε+ v,

√
ε+ ṽ)

and
∣∣En−1

[
g2]− g2∣∣ ≤ En−1

[
g2]+ g2.

Following Ward et al. [2019], we can use the following inequality to bound κ and ρ,

∀λ > 0, x, y ∈ R, xy ≤ λ

2x
2 + y2

2λ. (5.30)

First applying (5.30) to κ with

λ =
√
ε+ ṽ

2 , x = |G|√
ε+ ṽ

, y = |g|En−1
[
g2]

√
ε+ ṽ

√
ε+ v

,

we obtain

κ ≤ G2

4
√
ε+ ṽ

+ g2En−1
[
g2]2

(ε+ ṽ)3/2(ε+ v)
.

Given that ε+ ṽ ≥ En−1
[
g2] and taking the conditional expectation, we can simplify as

En−1 [κ] ≤ G2

4
√
ε+ ṽ

+ En−1
[
g2]

√
ε+ ṽ

En−1

[
g2

ε+ v

]
. (5.31)

Given that
√
En−1 [g2] ≤

√
ε+ ṽ and

√
En−1 [g2] ≤ R, we can simplify (5.31) as

En−1 [κ] ≤ G2

4
√
ε+ ṽ

+REn−1

[
g2

ε+ v

]
. (5.32)

Now turning to ρ, we use (5.30) with

λ =
√
ε+ ṽ

2En−1 [g2] , x = |Gg|√
ε+ ṽ

, y = g2

ε+ v
, (5.33)

we obtain

ρ ≤ G2

4
√
ε+ ṽ

g2

En−1 [g2] + En−1
[
g2]

√
ε+ ṽ

g4

(ε+ v)2 ,
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Given that ε+ v ≥ g2 and taking the conditional expectation we obtain

En−1 [ρ] ≤ G2

4
√
ε+ ṽ

+ En−1
[
g2]

√
ε+ ṽ

En−1

[
g2

ε+ v

]
, (5.34)

which we simplify using the same argument as for (5.32) into

En−1 [ρ] ≤ G2

4
√
ε+ ṽ

+REn−1

[
g2

ε+ v

]
. (5.35)

Notice that in 5.33, we possibly divide by zero. It suffice to notice that if En−1
[
g2] = 0

then g2 = 0 a.s. so that ρ = 0 and (5.35) is still verified.
Summing (5.32) and (5.35) we can bound

En−1 [|A|] ≤ G2

2
√
ε+ ṽ

+ 2REn−1

[
g2

ε+ v

]
. (5.36)

Injecting (5.36) and (5.29) into (5.28) finishes the proof.

Anticipating on Section 5.6.2, we can see that for a coordinate i ∈ [d] and iteration
n ∈ N∗, the deviation from a descent direction is at most

2REn−1

[
(∇ifn(xn−1))2

ε+ vn,i

]
.

While for any specific iteration, this deviation can take us away from a descent direction,
the next lemma tells us that when we sum those deviations over all iterations, it cannot
grow larger than a logarithmic term. This key insight introduced by Ward et al. [2019]
is what makes the proof work.

Lemma 5.2 (sum of ratios with the denominator increasing as the numerator). We
assume we have 0 < β2 ≤ 1 and a non-negative sequence (an)n∈N∗. We define bn =∑n
j=1 β

n−j
2 aj with the convention b0 = 0. Then we have,

N∑
j=1

aj
ε+ bj

≤ ln
(

1 + bN
ε

)
−N ln(β2). (5.37)

Proof. Given that concavity of ln, and the fact that bj > aj , we have for all j ∈ N∗,
aj

ε+ bj
≤ ln(ε+ bj)− ln(ε+ bj − aj)

= ln(ε+ bj)− ln(ε+ β2bj−1)

= ln
(

ε+ bj
ε+ bj−1

)
+ ln

(
ε+ bj−1
ε+ β2bj−1

)
.

The first term on the right hand side forms a telescoping series, while the last term is
bounded by − ln(β) as ε ≥ β2ε. increasing with bj−1 and thus is bounded by − ln(β2).
Summing over all j ∈ [N ] gives the desired result.
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5.6.2. Proof of Adam and Adagrad without momentum

For all iterations n ∈ N∗, we define the update un ∈ Rd,

∀i ∈ [d], un,i = ∇ifn(xn−1)
√
ε+ vn,i

. (5.38)

Adam Let us a take an iteration n ∈ N∗. We note αn = α
√∑n

j=0 β
j
2 (see (5.4) in

Section 5.2.2. Using the smoothness of F defined in (5.8), we have

F (xn) ≤ F (xn−1)− αn∇F (xn−1)Tun + α2
nL

2 ‖un‖22 .

Notice that due to the a.s. `∞ bound on the gradients (5.7), we have for any i ∈ [d],√
ε+ ṽn,i ≤ R

√∑n−1
j=0 β

j
2, so that,

αn
(∇iF (xn−1))2

2
√
ε+ ṽn,i

≥ α (∇iF (xn−1))2

R
. (5.39)

Taking the conditional expectation with respect to f0, . . . , fn−1 we can apply the descent
Lemma 5.1 and use (5.39) to obtain,

En−1 [F (xn)] ≤ F (xn−1)− α

2R ‖∇F (xn−1)‖22

+
(

2αnR+ α2
nL

2

)
En−1

[
‖un‖22

]
.

Given that β2 < 1, we have αn ≤ α√
1−β2

. Summing the previous inequality for all
n ∈ [N ] and taking the complete expectation yields

E [F (xN )] ≤ F (x0)− α

2R

N−1∑
n=0

E
[
‖∇F (xn)‖22

]

+
(

2αR√
1− β2

+ α2L

2(1− β2)

)
N−1∑
n=0

E
[
‖un‖22

]
. (5.40)

The application of Lemma 5.2 immediately gives for all i ∈ [d],

E
[
N−1∑
n=0

u2
n,i

]
≤ ln

(
1 + R2

(1− β)ε

)
−N ln(β).

Injecting into (5.40) and rearranging the terms, the result of Theorem 1 follows imme-
diately.
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Adagrad. Let us now take αn = α and β2 to recover Adagrad. Using again the smooth-
ness of F defined in (5.8), we have

F (xn+1) ≤ F (xn)− α∇F (xn)Tun.+
α2L

2 ‖un‖22 .

Notice that due to the a.s. `∞ bound on the gradients (5.7), we have for any i ∈ [d],√
ε+ ṽn,i ≤ R

√
n, so that,

α
(∇iF (xn−1))2

2
√
ε+ ṽn,i

≥ α (∇iF (xn−1))2

2R
√
n

. (5.41)

Taking the conditional expectation with respect to f0, . . . , fn−1 we can apply the descent
Lemma 5.1 and use (5.41) to obtain,

En−1 [F (xn)] ≤ F (xn−1)− α

2R ‖∇F (xn−1)‖22

+
(

2αR+ α2L

2

)
En−1

[
‖un‖22

]
.

Summing the previous inequality for all n ∈ [N ], taking the complete expectation, and
using that

√
n ≤
√
N gives us,

E [F (xN )] ≤ F (x0)− α

2R
√
N

N−1∑
n=0

E
[
‖∇F (xn)‖22

]

+
(

2αR+ α2L

2

)
N−1∑
n=0

E
[
‖un‖22

]
. (5.42)

The application of Lemma 5.2 immediately gives for all i ∈ [d],

E
[
N−1∑
n=0

u2
n,i

]
≤ ln

(
1 + R2N

ε

)
.

Injecting into (5.42) and rearranging the terms, the result of Theorem 2 follows imme-
diately.

5.7. Conclusion

We provided a simple proof on the convergence of Adam and Adagrad without heavy-
ball style momentum. The extension to include heavy-ball momentum is slightly more
complex, but our approach leads to simpler proofs than previous ones, while significantly
improving the dependence on the momentum parameter. The bounds clarify the impor-
tant parameters for the convergence of Adam. A main practical takeaway, increasing the
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exponential decay factor is as critical as decreasing the learning rate for converging to
a critical point. Our analysis also highlights a link between Adam and a finite-horizon
version of Adam: for fixed N , taking α = 1/

√
N and β2 = 1− 1/N for Adam gives the

same convergence bound as Adagrad.
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6. Future directions

Audio Since the redaction of the present manuscript, we adapted the Demucs archi-
tecture to the task of real time noise removal in speech recordings. It achieves state-
of-the-art performance on real life recordings, with a model of 15MB able to enhance
16ms of audio in 13ms of processing time on an average laptop CPU. Those results are
additional evidence that our approach can be used for real life applications thanks to its
computational efficiency. However, we are limited by the “noise + noise” problem: when
two sources contains noise-like stochastic textures at the same time, it is not possible to
separate them (except on the train set where the model can overfit) using a regression
loss over the waveform.
This problem could be solved with more complex losses on spectrograms, taking into

account local statistics rather than doing only pointwise regression, as already done
by Caracalla and Roebel [2017] for audio texture synthesis. We also noticed that the
strided transposed convolutions tend to favor some frequencies within the noise (those
with a wavelength that is proportional to the stride), so that the synthesized noise
clearly sounds “artificial”. In order to restore the balance of frequencies, a potential
solution would be to use parallel layers with different strides. Intuitively, the current
architecture works like a single guitar string with few frets. We would like instead to
have multiple strings with different base lengths and more frets so that the model can
recreate any frequency easily. This new architecture could perform better separation
when many stochastic textures overlap, which is the case for the original “cocktail party
problem” with a large number of guests. Such a model could also be used for fast speech
synthesis on CPU. While it is already possible to do so1 it is currently only possible
for devices with a power supply, and using all available cores. A lighter approach could
generalize high quality speech synthesis to many more devices and free up resources for
other complementary tasks.

Optimization There are two directions to pursue regarding convex and non convex
optimization. First, the bounds we present in Chapter 5 worsen when using heavy-ball

1https://ai.facebook.com/blog/a-highly-efficient-real-time-text-to-speech-[...]-on-cpus/
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momentum, which contradicts practical evidences. It is possible however that real life
problems have enough regularity which makes momentum work well. An interesting
question to study is whether there exist a worst case problem on which momentum
degrades performance. A second question is why it helps on practical problems, and
whether it also impacts the generalization of the model.
A second interesting direction would be to extend the Adabatch approach presented

in Chapter 4 to more complex “reliable” estimates of the Hessian. Indeed, we have seen
that Adabatch performs a reconditioning of the problem by estimating the contribution
to the Hessian that is coming from the sparsity of the problem. This estimate is always
stable, unlike with generic stochastic second order methods. In Chapter 5, we have seen
that we need the objective function to be uniformly L smooth. This is not verified by
deep neural networks: for a simple feed-forward network, the smoothness with respect
to one layer will roughly grow as the product of the norms of the other layers. An
interesting question is whether this knowledge on the structure of the model can be used
to derive a stable pre-conditioner that speeds up performance. This pre-conditioner
could also help provide convergence bounds without requiring uniform smoothness when
a proxy for the local smoothness is available.
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A. Supplementary results for Demucs

A.1. Audio samples

We provide audio samples taken from the test set of MusDB. They are available through
the ICLR code sharing url1 along with all the source code to reproduce our experiments.
The audio files for the Wave-U-Net and MMDenseLSTM have been obtained from the
SiSec Mus 2018 evaluation campaign results website2. For Open Unmix, we generated
them from the pretrained UMX model using the reference PyTorch implementation3. We
recommend listening to the audio samples with headphones, while being careful with the
volume. An HTML page index.html is provided for easier comparison. The following
folders are provided:

• Reference: ground truth,

• Open Unmix,

• WaveUNet,

• Demucs: trained only on MusDB,

• DemucsExtra: trained on MusDB and an extra 150 songs,

• ConvTasnet: trained only on MusDB,

• ConvTasnetExtra: trained on MusDB and an extra 150 songs,

• MMDenseNetLSTM, trained on MusDB and an extra 804 songs.

A.2. Results for all metrics with box plots

Reusing the notations from Vincent et al. [2006], let us take a source j ∈ 1, 2, 3, 4 and
introduce Psj (resp Ps) the orthogonal projection on sj (resp on Span(s1, . . . , s4)). We

1https://ai.honu.io/papers/demucs/
2https://sisec18.unmix.app
3https://github.com/sigsep/open-unmix-pytorch.
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then take with ŝj the estimate of source sj

starget := Psj (ŝj) einterf := Ps(ŝj)− Psj (ŝj) eartif := ŝj − Ps(ŝj)

We can now define various signal to noise ratio, expressed in decibels (dB): the source
to distortion ratio

SDR := 10 log10
‖starget‖2

‖einterf + eartif‖2
,

the source to interference ratio

SIR := 10 log10
‖starget‖2

‖einterf‖2

and the sources to artifacts ratio

SAR := 10 log10
‖starget + einterf‖2

‖eartif‖2
.

As explained in the main paper, extra invariants are added when using the museval
package. We refer the reader to Vincent et al. [2006] for more details. We provide
box plots for each metric and each target on Figures A.1, A.2, A.3 and A.4, generated
using the notebook provided specifically by the organizers of the SiSec Mus evaluation
campaign4. Hereafter, we provide the equivalent of Table 1 in the main paper for both
SIR and SAR.

Test SIR in dB

Architecture Wav? Extra? All Drums Bass Other Vocals

IRM oracle 7 N/A 15.53 15.61 12.88 12.84 20.78

Open-Unmix 7 7 10.49 11.12 10.93 6.59 13.33
Wave-U-Net 3 7 6.26 8.83 5.78 2.37 8.06
Demucs 3 7 10.39 ±.07 11.81 ±.27 10.55 ±.20 5.90 ±.04 13.31 ±.21

Conv-Tasnet 3 7 11.47 ±.09 12.31 ±.09 11.52 ±.15 7.76 ±.07 14.30 ±.32

Demucs 3 150 11.95 ±.09 13.74 ±.25 13.03 ±.22 7.11 ±.10 13.94 ±.10

Conv-Tasnet 3 150 12.24 ±.09 13.66 ±.14 13.18 ±.13 8.40 ±.08 13.70 ±.22

MMDenseLSTM 7 804 12.24 11.94 11.59 8.94 16.48

4https://github.com/sigsep/sigsep-mus-2018-analysis
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Test SAR in dB

Architecture Wav? Extra? All Drums Bass Other Vocals

IRM oracle 7 N/A 8.31 8.40 7.40 7.93 9.51

Open-Unmix 7 7 5.90 6.02 6.34 4.74 6.52
Wave-U-Net 3 7 4.49 5.29 4.64 3.99 4.05
Demucs 3 7 6.08 ±.01 6.18 ±.03 6.41 ±.05 5.18 ±.06 6.54 ±.04

Conv-Tasnet 3 7 6.13 ±.04 6.19 ±.05 6.60 ±.07 4.88 ±.02 6.87 ±.05

Demucs 3 150 6.50 ±.02 7.04 ±.07 6.68 ±.04 5.26 ±.03 7.00 ±.05

Conv-Tasnet 3 150 6.57 ±.02 7.35 ±.05 6.96 ±.08 4.76 ±.05 7.20 ±.05

MMDenseLSTM 7 804 6.50 6.96 6.00 5.55 7.48

Figure A.1.: Boxplot showing the distribution of SDR, SIR and SAR over the tracks of
the MusDB test for the drums source.
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Figure A.2.: Boxplot showing the distribution of SDR, SIR and SAR over the tracks of
the MusDB test for the bass source.

Figure A.3.: Boxplot showing the distribution of SDR, SIR and SAR over the tracks of
the MusDB test for the other source.
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Figure A.4.: Boxplot showing the distribution of SDR, SIR and SAR over the tracks of
the MusDB test for the vocals source.
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B. Proofs of convergence of Adabatch

Introduction

We present in Section B.1 the pseudocode for AdaBatch and Wild AdaBatch. In Sec-
tion B.2, we give two lemma from which we can derive the expectation and variance
of the AdaBatch gradient update. In Section B.3 we study the convergence of regular
mini-batch and AdaBatch for SGD as well as the convergence of reconditionned SGD. In
Section B.4 we compare the convergence of regular mini-batch and AdaBatch for SVRG.
Finally in Section B.5 we give convergence plots for Wild AdaBatch and SVRG on the
remaining datasets.

B.1. Algorithms

We present two possible uses of AdaBatch. Algorithm 1 counts for each mini-batch the
number of time each feature is non zero and use that to recondition the gradient. This
is the algorithm that we study in Section 4.2.
Algorithm 2 is an Hogwild! inspired synchronous SGD method that we introduce

in Section 4.4. Instead of counting the features, we directly use the reconditioning
1−(1−p(k))B

p where B is the batch size and ∀k ∈ [d], p(k) = P [k ∈ S (f)] i.e., the probability
that feature k is active in a random training sample. We prove in section B.3.2 that this
reconditioning benefit from the same convergence speed as regular AdaBatch and does
not require to keep count of the features which is easier to implement in the parallel
setting, although it requires to precompute the probabilities p(k).

B.2. Expectation and variance of the AdaBatch update

The AdaBatch update gab,n is defined as

∀k ∈ [d], g(k)
ab,n =


∑

b:k∈S(f) f
′
n,b(wn−1)(k)∑

b:k∈S(f) 1 if ∑b:k∈S(f) 1 6= 0

0 otherwise.
(B.3)
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Algorithm 1 AdaBatch
function AdaBatch(w0, N,B, γ, f)

for n ∈ [N ] do
for b ∈ [B] do

Sample fn,b from the distribution of f
Compute f ′n,b(w)

end for
for b ∈ [B] do

for k ∈ S (fn,b) do

w(k)
n ← w

(k)
n−1 − γ

f ′n,b(wn−1)(k)

|{b : k ∈ S (fn,b)}|
(B.1)

end for
end for

end for
end function

Algorithm 2 Wild AdaBatch
function Wild AdaBatch(w0, N,B, γ, p, f)

for n ∈ [N ] do
parallel for b ∈ [B] do

Sample fn,b from the distribution of f
Compute f ′n,b(w)

end parallel for
parallel for b ∈ [B] do

for k ∈ S (fn,b) do

w(k)
n ← w

(k)
n−1 −

γ

B

1− (1− p(k))B
p

f ′n,b(wn−1)(k) (B.2)

end for
end parallel for

end for
end function
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so that we have the recurrence rule for SGD

wn = wn−1 − γgab,n.

gab,n is a per coordinate stochastic average of only the subset of the gradients which
have a non zero coordinate in that direction. We will need the following Lemma in order
to get the expected value and the variance of gab,n.

Lemma B.1. Let Z, (Zi)i∈[N ] N i.i.d. random variables with value in R for which the
set {0} is measurable with p = P [Z 6= 0] > 0, and A ∈ R a random variable defined as

A := 0 if ∀i ∈ [N ], Zi = 0

A :=
∑

i∈[N ] Zi∑
i∈[N ]:Zi!=0 1 otherwise.

.

We have
E [A] = 1− (1− p)N

p
E [Z] , (B.4)

E
[
A2
]

= (1− (1− p)N )2

p2 E [Z]2 +

∑
i∈[N ]

(
N

i

)
pi(1− p)N−i 1

i

(E
[
Z2]
p
− E [Z]2

p2

)
(B.5)

≤ (1− (1− p)N )2

p2 E [Z]2 + (1− (1− p)N )
p

E
[
Z2
]
. (B.6)

Proof. We introduce µ the measure of Z and µ+ the measure of Z+ defined for any
measurable A ⊂ R

µ+(A) = µ(A \ {0})
µ(R \ {0}) .

Intuitively Z+ is the random variable we obtain if we drop all realizations where Z = 0.
One can verify that E

[
Z+] = E[Z]

p and E
[
(Z+)2] = E[Z2]

p .
Taking Q ∼ B(p) a Bernoulli of parameter p independent from Z+, one can readily

notice that Z ∼ QZ+. We thus take N i.i.d. such copies (Qi, Z+
i )i∈[N ]. Let us take any

q ∈ {0, 1}N so that |q| := ∑
i∈[N ] qi > 0,

E [A|Q = q] = E
[∑

i∈[N ] qiZ
+
i

|q|

]

=
∑
i:qi=1 E

[
Z+
i

]
|q|

= E
[
Z+
]
.
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Given that E
[
A|
∑
i∈[N ]Qi = 0

]
= 0 and that P

[∑
i∈[N ]Qi 6= 0

]
= 1− (1− p)N , we get

(B.4).
We will denote V [A|Q = q] = E

[
A2|Q = q

]
− E [A|Q = q]2. We study

E
[
A2|Q = q

]
= V [A|Q = q] + E [A|Q = q]2

= V
[∑

i:qi=1 Z
+
i

|q|

]
+ E [Z]2

p2

= V
[
Z+]
|q|

+ E [Z]2

p2

= E
[
Z2]

p |q|
− E [Z]2

p2 |q|
+ E [Z]2

p2 .

E
[
A2
]

=
∑
k∈[N ]

E
[
A2| |Q| = k

]
P [|Q| = k]

=
∑
k∈[N ]

(
N

k

)
pk(1− p)N−k 1

k

(
E
[
Z2]
p
− E [Z]2

p2

)
+ E [Z]2

p2 (1− (1− p)N )

≤ (1− (1− p)N )E
[
Z2]
p

+ (1− (1− p)N )E [Z]2

p2 ,

as ∑k∈[N ]
(N
k

)
pk(1 − p)N−k 1

k ≤ 1 − (1 − p)N which gives us (B.5) and conclude this
proof.

Thanks to Lemma B.1 we get

∀k ∈ [d],E
[
g

(k)
ab,n

]
= 1− (1− p(k))B

p(k) E
[
F ′(wn−1)

]
(B.7)

∀k ∈ [d],E
[(
g

(k)
ab,n

)2
]
≤ (1− (1− p(k))N )

p
E
[(
f ′(wn−1)(k)

)2
]

+ (1− (1− p(k))N )
p2

∥∥∥F ′(wn−1)(k)
∥∥∥2
.

(B.8)

We now present an improved bound for the second order moment of Z that can be
better if than the previous one in the case where Np is large enough. Although we will
not provide a full proof of convergence using this result for simplicity, we will comment
on how this impact convergence in the proof of theorem 6.

Lemma B.2. With the same notation as in lemma B.1, if Np ≥ 5 we have

E
[
A2
]
≤ 5(1− (1− p)N )E

[
Z2]

Np2 + (1− (1− p)N )E [Z]2

p2 . (B.9)
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Proof. We reuse the notation from the proof of Lemma B.1. Let us define M := |Q|
which follows a binomial law of parameter N and p. Using Chernoff’s inequality, we
have for any k ≤ Np,

P [M ≤ k] ≤ exp
(
−(Np− k)2

2Np

)
,

taking k = Np
2 we obtain

P
[
M ≤ Np

2

]
≤ exp

(
−Np8

)
.

We have

E
[ 1
M
|M > 0

]
≤ P

[
M ≤ Np

2 |M > 0
]

+ 2
Np

=
P
[
M ≤ Np

2

]
P [M > 0] + 2

Np

≤
exp

(
−Np

8

)
1− (1− p)N + 2

Np
.

We have as p ≥ 5/N and using standard analysis techniques,

exp
(
−Np

8

)
1− (1− p)N ≤

3
Np

.

We obtain

E
[ 1
M
|M > 0

]
≤ 5
Np

.

Plugging this result into (B.5), we immediately have

E
[
A2
]
≤ 5(1− (1− p)N )E

[
Z2]

Np2 + (1− (1− p)N )E [Z]2

p2 .

B.3. Proof of convergence of AdaBatch and mini-batch SGD

B.3.1. Constant step size SGD with mini-batch

We will first give a convergence result for the regular mini-batch SGD, which is adapted
from Needell and Ward [2016].
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Assumption 2. We assume there exists a convex compact set D ⊂ Rd so that f and F
verifies the following assumptions for µ, L and R strictly positive,

1. The hessian F ′′ of F is bounded from above and below as:

∀w ∈ D, µ Id � F ′′(w) � L Id, (B.10)

with µ > 0 so that f is µ strongly convex and L smooth over D.

2. We assume f ′′ is almost surely bounded,

∀w ∈ D, f ′′(w) � R2 Id . (B.11)

3. Let w∗ := arg minw∈D F (w),

F ′(w∗) = 0, (B.12)

which means in particular that w∗ is a global minimizer of F over Rd.

This does not limit us to the case of globally strongly convex functions F as we only
require it to be strongly convex on a compact subset that contains the global optimum
w∗. In practice, this is often going to be the case, even when using a non strictly convex
loss such as the logistic loss as soon as the problem is not perfectly separable, i.e., there
is no hyperplane that perfectly separates the classes we are trying to predict.
We will now study the recursion for a given w0 ∈ Rd given by

∀n > 0, wn = ΠD

wn−1 −
γ

B

∑
b∈[B]

f ′n,b(wn−1)

 , (B.13)

where ΠD[w] := arg minx∈D ‖w − x‖2 is the orthogonal projection on the set D. This
extra step of projection is required for this proof technique but experience shows that it
is not needed.

Theorem 5 (Convergence of Fn − F∗ for SGD with mini-batch). If Assumptions 2 are
verified and

γ

[
L

(
1− 1

B

)
+ 2R2

B

]
≤ 1, (B.14)

then for any N > 0,

‖wN − w∗‖2 ≤ (1− γµ/2)N ‖w0 − w∗‖2 + 4γ
Bµ

E
[∥∥f ′(w∗)∥∥2

]
, (B.15)
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and introducing

w̄N =
∑
n∈[N ](1− γµ/2)N−nwn∑
n∈[N ](1− γµ/2)N−n ,

we have

E [F (w̄N )]− F∗ ≤ γ−1(1− γµ/2)N ‖w0 − w∗‖2 + 2γ
B

E
[∥∥f ′(w∗)∥∥2

]
. (B.16)

Introducing w̄N allows for an easier comparison directly on the objective function.
This is made for qualitative analysis and we do not in practice perform this averaging.
We can see that the error given by (B.16) can be composed in two terms, one that

measure how quickly we move away from the starting point and the second that depends
on the stochastic noise around the optimum. We will call the former the bias term and
the latter the variance term, following the terminology introduced by Bach and Moulines
[2013].

Proof. We introduce ∀n ∈ [N ],Fn−1 the σ-field generated by (fi,b)i∈[n−1],b∈[B]. Let us
take n ∈ [N ] and introduce ηn := wn − w∗ and gn := 1

B

∑
b∈[B] f

′
n,b(wn−1). We then

proceed to bound ‖ηn‖2,

‖ηn‖2 ≤ ‖ηn−1 − γgn‖2 as ΠD is contractant for ‖·‖
= ‖ηn−1‖2 − 2γgTn ηn−1 + γ2 ‖gn‖2 .

Taking the expectation while conditioning on Fn−1 we obtain

E
[
‖ηn‖2 |Fn−1

]
≤ ‖ηn−1‖2 − 2γF ′(wn−1)T ηn−1 + γ2E

[
‖gn‖2 |Fn−1

]
, (B.17)

E
[
‖gn‖2 |Fn−1

]
=

E
[
‖f ′(wn−1)‖2

]
B

+
∥∥F ′(wn−1)

∥∥2
(

1− 1
B

)
.

Injecting this in (B.17) gives us

E
[
‖ηn‖2 |Fn−1

]
≤ ‖ηn−1‖2 − 2γF ′(wn−1)T ηn−1 + γ2

B
E
[∥∥f ′(wn−1)

∥∥2
]

+ γ2 ∥∥F ′(wn−1)
∥∥2
(

1− 1
B

)
.

(B.18)

As F ′′ � L Id and using the co-coercivity of F ′ we have∥∥F ′(wn−1)
∥∥2 =

∥∥F ′(wn−1)− F ′(w∗)
∥∥2

≤ L(F ′(wn−1)− F ′(w∗))T (wn−1 − w∗)
= LF ′(wn−1)T (wn−1 − w∗).
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We have
∥∥f ′(wn−1)

∥∥2 ≤ 2
∥∥f ′(wn−1)− f ′(w∗)

∥∥2 + 2
∥∥f ′(w∗)∥∥2

≤ 2R2(f ′(wn−1)− f ′(w∗))T (wn−1 − w∗) + 2
∥∥f ′(w∗)∥∥2

,

and

E
[∥∥f ′(wn−1)

∥∥2 |Fn−1
]
≤ 2R2F ′(wn−1)T (wn−1 − w∗) + 2

∥∥f ′(w∗)∥∥2
.

Injecting in (B.18) we get

E
[
‖ηn‖2 |Fn−1

]
≤ ‖ηn−1‖2 − γF ′(wn−1)T ηn−1

(
2− γL

(
1− 1

B

)
− 2γR2

B

)
︸ ︷︷ ︸

A

+
2γ2E

[
‖f ′(w∗)‖2

]
B

.

We want A to be large enough, we will take

γ

[
L

(
1− 1

B

)
+ 2R2

B

]
≤ 1, (B.19)

which gives us A ≥ 1 and

E
[
‖ηn‖2 |Fn−1

]
≤ ‖ηn−1‖2 − γF ′(wn−1)T ηn−1 +

2γ2E
[
‖f ′(w∗)‖2

]
B

.

As F is µ strictly convex, we have

F∗ − F (wn−1) ≥ F ′(wn−1)T (w∗ − wn−1) + µ

2 ‖ηn−1‖2 ,

which allows to obtain

E
[
‖ηn‖2 |Fn−1

]
≤ (1− γµ/2) ‖ηn−1‖2 − γ(F (wn−1)− F∗) + 2γ2

B
E
[∥∥f ′(w∗)∥∥2

]
. (B.20)

Taking the full expectation gives us

E
[
‖ηn‖2

]
≤ (1− γµ/2)E

[
‖ηn−1‖2

]
− γ(E [F (wn−1)]− F∗) +

2γ2E
[
‖f ′(w∗)‖2

]
B

,

≤ (1− γµ/2)n ‖η0‖2 +
2γ2E

[
‖f ′(w∗)‖2

]
B

∑
0≤i<n

(1− γµ/2)i

≤ (1− γµ/2)n ‖η0‖2 + 4γ
Bµ

E
[∥∥f ′(w∗)∥∥2

]
,

which gives us (B.15).
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Let us now take α := (1− γµ/2), let us call un := E
[
‖ηn‖2

]
, we have using (B.20),

γδn−1 ≤ αun−1 − un + 2γ2R2

γδn−1α
−n ≤ α−n+1un−1 − unα−n + 2γ2R2α−n,

summing for n from 1 to N we obtain

γ
∑
n∈[N ]

δn−1α
−n ≤ u0 − uNα−N + 2γ2

B
E
[∥∥f ′(w∗)∥∥2

] ∑
n∈[N ]

α−n,

dividing by ∑n∈[N ] α
−n on each side and using the convexity of F we get

E [F (w̄N−1)]− F∗ ≤ αNu0 + 2γ2

B
E
[∥∥f ′(w∗)∥∥2

]
,

which gives us (B.16) and concludes this proof.

B.3.2. Convergence of reconditioned SGD

Let us now assume that we have for some matrices T and C definite positive so that

∀w ∈ D, µT � F ′′(w) � LT,
∀w ∈ D, f ′′(w) � L Id a.s.

We now study wn defined by the following recurence

wn = wn−1 −
γ

B
C
∑
b∈[B]

f ′n,b(wn−1). (B.21)

First let us introduce v0 :=
√
C
−1
w0, v∗ :=

√
C
−1
w∗ and h(w) := f(

√
Cw) as well as

∀n ∈ [N ], b ∈ [B], hn,b(w) := fn,b(
√
Cw), then we define

vn := vn−1 −
γ

B

∑
b∈[B]

h′m,b(vn−1).

Multiplying by
√
C we recover the same recurrence rule as (B.21) for wn =

√
Cvn.

Therefore, the convergence of vn will give us the convergence of wn.
Let us take H(w) := E [h(w)] = F (

√
Cw). By definition we have

∀w ∈ DC , µ
√
CT
√
C � F ′′(w) � L

√
CT
√
C,

∀w ∈ DC , h′′(w) � R2LC Id a.s.,
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where DC =
√
C
−1D, LC is the largest eigen value of C. If we take µC,T (resp LC,T ) the

smallest (resp largest) eigenvalue of
√
CT
√
C, then using Theorem 5, we have for

γ

[
LLC,T

(
1− 1

B

)
+ 2LCR2

B

]
≤ 1, (B.22)

‖vN − v∗‖2 ≤ (1− γµC,T )N ‖v0 − v∗‖2 + 2γ
Bµ

E
[∥∥h′(v∗)∥∥2

]
,

and introducing

v̄N =
∑
n∈[N ](1− γµC,T /2)N−nvn∑
n∈[N ](1− γµC,T /2)N−n ,

we have

E [H(v̄N )]−H∗ ≤ γ−1(1− γµC,T )N ‖v0 − v∗‖2 + 2γLCR2

B
E
[∥∥h′(v∗)∥∥2

]
.

Using wn =
√
Cvn, we obtain

‖wN − w∗‖2C−1 ≤ (1− γµC,T )N ‖w0 − w∗‖2C−1 + 4γ
Bµ

E
[∥∥f ′(w∗)∥∥2

C

]
,

E [F (w̄N )]− F∗ ≤ γ−1(1− γµC,T )N ‖w0 − w∗‖2C−1 + 2γLC
B

E
[∥∥f ′(w∗)∥∥2

C

]
. (B.23)

Application to sparse optimization. In the sparse setting, we have made the assump-
tion that T := Diag (p). We suggested two reconditioning strategies in such case. The
first one is to take C = Diag (p)−1. In such case µC,T = LC,T = 1 so that we have a
perfect conditioning. However LC = p−1

min so that if B � p−1
min we would have to take a

much smaller step size and the term 1
BE

[
‖f ′(w∗)‖2

]
Diag(p)−1 would explode.

The second one, C := Diag
(

1−(1−p)B

p

)
so that µC,T = 1− (1−pmin)B and LC,T = 1−

(1−pmax)B. Because the fonction p→ 1−(1−p)B increases faster for small probabilities,
the conditioning of the problem is improved. If pmax is close to 1 and pmin close to 0,
then µC,T ≈ Bpmin and LC ≈ pmax. We have LC ≤ B as ∀p ∈ [0, 1], (1− (1−p)B) ≤ Bp,
so that the increase due to LC is perfectly balanced out by the batch size B in (B.22).
Besides, as C

B � Id, we have 1
BE

[
‖f ′(w∗)‖2C

]
≤ E

[
‖f ′(w∗)‖2

]
.

B.3.3. Convergence of AdaBatch

We now make the following assumptions:

Assumption 3. We assume there exists a convex compact set D ⊂ Rd, µ, L and R

strictly positive so that we have the following assumptions verified.
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1. The Hessian F ′′ (resp f ′′) of F (resp f) are bounded from above and below as:

∀w ∈ D, µDiag (p) � F ′′(w) � LDiag (p) and ∀w ∈ D, f ′′(w) � R2 Id .
(B.24)

2. Let w∗ := arg minw∈D F (w),

F ′(w∗) = 0. (B.25)

In particular, w∗ is a global minimizer of F over Rd.

We will now study convergence when we use the AdaBatch update. We are given
w0 ∈ Rd and we define C := Diag

(
1−(1−p)B

p

)
and we define recursively,

∀k ∈ [d], gkab,n =


∑

b∈Bk
n
f ′n,b(wn−1)k∑

b:k∈S(f) 1 if ∑b:k∈S(f) 1 6= 0

0 otherwise

wn = ΠD,C [wn−1 − γgab,n] ,

where ΠD,C [w] := arg minx∈D ‖w − x‖2C−1 is the projection on the set D with respect to
‖·‖C−1 . This extra step of projection is required for this proof technique but experience
shows that it is not needed. We introduce ∀p ∈ [0, 1], p+B := 1− (1− p)B.

Theorem 6 (Convergence of Fn−F∗ for AdaBatch). If Assumptions 3 are verified and

γ
(
L+ 2R2

)
≤ 1, (B.26)

then for any N > 0,

‖wN − w∗‖2 ≤ (1− γp+B
minµ/2)N ‖w0 − w∗‖2 + 4γ

µ
E
[∥∥f ′(w∗)∥∥2

]
, (B.27)

and introducing

w̄N =
∑
n∈[N ](1− γp+B

minµ/2)N−nwn∑
n∈[N ](1− γp+B

minµ/2)N−n
,

we have

E [F (w̄N )]− F∗ ≤ γ−1(1− γp+B
minµ/2)N ‖w0 − w∗‖2 + 2γE

[∥∥f ′(w∗)∥∥2
]
. (B.28)

Proof. We introduce ∀n ∈ [N ],Fn−1 the σ-field generated by (fi,b)i∈[n−1],b∈[B]. Let us
take n ∈ [N ] and introduce ηn := wn − w∗. We then proceed to bound ‖ηn‖2C−1 ,

‖ηn‖2C−1 ≤ ‖ηn−1 − γgn‖2C−1 as ΠD is contractant for ‖·‖C−1

= ‖ηn−1‖2C−1 − 2γgTn ηn−1 + γ2 ‖gn‖2C−1 .
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Taking the expectation while conditioning on Fn−1 we obtain

E
[
‖ηn‖2C−1 |Fn−1

]
≤ ‖ηn−1‖2C−1 − 2γF ′(wn−1)T ηn−1 + γ2E

[
‖gn‖2C−1 |Fn−1

]
. (B.29)

Using Lemma B.1,

E
[
‖gn‖2C−1 |Fn−1

]
≤ E

[∥∥f ′(wn−1)
∥∥2
]

+
∥∥F ′(wn−1)

∥∥2
diag(p)−1 . (B.30)

Although we will not do it in the following, it is also possible to use Lemma B.2. Indeed,
for any k ∈ [d] such that Bp(k) ≥ 5, we have

E
[(
g(k)
n

)2
C−1
k,k|Fn−1

]
≤

5E
[
(f ′(wn−1)(k))2

]
Np

+ (F ′(wn−1)(k))2

p(k) ,

which would be equivalent for the dimension k to having a regular batch size of p(k)B
5 .

This shows that AdaBatch will benefit from a reduced variance for features that are
frequent enough. For simplicity we will however stick with the simpler bound given
by (B.30).
As F ′′ � Ldiag (p) and using the co-coercivity of F ′ we have∥∥F ′(wn−1)

∥∥2
diag(p)−1 =

∥∥F ′(wn−1)− F ′(w∗)
∥∥2

diag(p)−1

≤ L(F ′(wn−1)− F ′(w∗))T (wn−1 − w∗)
= LF ′(wn−1)T (wn−1 − w∗).

Injecting this in (B.29) gives us

E
[
‖ηn‖2 |Fn−1

]
≤ ‖ηn−1‖2C−1 − 2γF ′(wn−1)T ηn−1 + γ2E

[∥∥f ′(wn−1)
∥∥2
]
. (B.31)

We have ∥∥f ′(wn−1)
∥∥2 ≤ 2

∥∥f ′(wn−1)− f ′(w∗)
∥∥2 + 2

∥∥f ′(w∗)∥∥2

≤ 2R2(f ′(wn−1)− f ′(w∗))T (wn−1 − w∗) + 2
∥∥f ′(w∗)∥∥2

and

E
[∥∥f ′(wn−1)

∥∥2 |Fn−1
]
≤ 2R2F ′(wn−1)T (wn−1 − w∗) + 2

∥∥f ′(w∗)∥∥2
.

Injecting in (B.31) we get

E
[
‖ηn‖2C−1 |Fn−1

]
≤ ‖ηn−1‖2C−1 − γF ′(wn−1)T ηn−1

(
2− γL− 2γR2

)
︸ ︷︷ ︸

A

+2γ2E
[∥∥f ′(w∗)∥∥2

]
.
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We want A to be large enough, we will take

γ
(
L+ 2R2

)
≤ 1, (B.32)

which gives us A ≥ 1 and

E
[
‖ηn‖2C−1 |Fn−1

]
≤ ‖ηn−1‖2C−1 − γF ′(wn−1)T ηn−1 + 2γ2E

[∥∥f ′(w∗)∥∥2
]
.

As F ′′ � µDiag (p) we have

F∗ − F (wn−1) ≥ F ′(wn−1)T (w∗ − wn−1) + µ

2 ‖ηn−1‖2Diag(p)

≥ F ′(wn−1)T (w∗ − wn−1) + p+B
minµ

2 ‖ηn−1‖2C−1 ,

which allows to obtain

E
[
‖ηn‖2C−1 |Fn−1

]
≤ (1− γµp+B

min/2) ‖ηn−1‖2C−1 − γ(F (wn−1)− F∗) + 2γ2E
[∥∥f ′(w∗)∥∥2

]
.

(B.33)

Taking the full expectation gives us

E
[
‖ηn‖2C−1

]
≤ (1− γµp+B

min/2)E
[
‖ηn−1‖2C−1

]
− γ(E [F (wn−1)]− F∗) + 2γ2E

[∥∥f ′(w∗)∥∥2
]
,

≤ (1− γµp+B
min/2)n ‖η0‖2C−1 + 2γ2E

[∥∥f ′(w∗)∥∥2
] ∑

0≤i<n
(1− γµp+B

min/2)i

≤ (1− γµp+B
min/2)n ‖η0‖2C−1 + 4γ

µ
E
[∥∥f ′(w∗)∥∥2

]
,

which gives us (B.27). We obtain (B.28) in the exact same way as in the proof of
Theorem 5.

B.3.4. Sparse linear prediction

We will now show that Assumption 3 is easy to meet in the case of linear predictions. For
simplicity, let us assume X is a random variable with values in {0, 1}d with uncorrelated
features, i.e.,

∀k, k′ ∈ [d] : k 6= k′,E
[
X(k)X(k′)

]
= E

[
X(k)

]
X(k′),

and φ : R→ R a random convex function. Then one can take f(w) := φ(XTw). For m,
M and G strictly positive and D ⊂ Rd a convex compact, We assume almost surely we
have

∀w ∈ D,m ≤ φ′′(w) ≤M,

‖X‖2 ≤ G2 a.s.
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Then, for any w ∈ D we have

F ′′(w) = E
[
f ′′(w)

]
= E

[
φ′′(w)XXT

]
�ME

[
XXT

]
= M

(
Diag (p)−Diag (p)2 + ppT

)
.

Moreover, we have

ppT =
√

Diag (p)
(√

p
√
pT
)√

Diag (p). (B.34)

As √p√pT �
∥∥√p∥∥2 Id = ∑

k∈[d] p
(k) Id, we obtain

F ′′(w) �M

1 +
∑
k∈[d]

p(k)

Diag (p) .

Besides, we have

F ′′(w) � m
(
Diag (p)−Diag (p)2

)
� m(1− pmax)Diag (p) .

Finally,

f ′′(w) = φ′′(w)XXT

�MG2.

As a conclusion, Assumptions 3 are verified for µ := m(1−pmax), L := M
(
1 +∑

k∈[d] p
(k)
)

and R2 := G2M .

B.4. AdaBatch for SVRG

B.4.1. Mini-batch SVRG

We now only assume that F verifies the following inequalities for µ > 0,

∀w ∈ Rd, µ � F ′′(w) and f(w) � L a.s. (B.35)

Let us take a starting point y0 ∈ Rd andm ∈ N∗. For all s = 0, 1, . . . we have ws,0 := ys

and for all n ∈ [m] let us define

ws,n := ws,n−1 − γgs,n,

ys+1 := 1
m

∑
n∈[m]

ws,n.

146



with gs,n the SVRG update based on (fs,n,b)b∈[B] i.i.d samples of f . Let us introduce

∀k ∈ [d], D(k)
s,n :=

{
b ∈ [B] : k ∈ S

(
f ′s,n,b

)}
.

For any dimension k ∈ [d] we have

g(k)
s,n := 1

B

 ∑
b∈D(k)

s,n

f ′s,n,b(ws,n−1)(k) − f ′s,n,b(ys)(k) + F ′(ys)(k)/p(k)

 .
Theorem 7 (Convergence of SVRG with mini-batch). If Assumptions B.35 are verified
and γ verifies

γL

(
1− 1

B

)
< 1,

then for all s > 0 we have

E [F (ys)− F∗] ≤ αs(F (y0)− F∗) (B.36)

where
α := 1

µγ
(
1− γL(3+B)

2B

)
m

+ 2Lγ
B
(
1− γL (3+B)

2B

) . (B.37)

Proof. We will reuse the proof technique from [Bubeck et al., 2015, section 6.3]. We
introduce ∀n ∈ [N ],Fs,n−1 the σ-field generated by (fu,i,b)u∈[s],i∈[n−1],b∈[B]. For simplic-

ity, we will drop all the s indices. We define Γn,b := diag
((

1k∈S(fn,b)/p
(k)
)
k∈[d]

)
and

Γ := diag
((

1k∈S(f)/p
(k)
)
k∈[d]

)
so that

gn = 1
B

∑
b∈[B]

f ′n,b(wn−1)− f ′n,b(y) + Γn,bF ′(ys)

 .
One can immediately notice that

E [gn|Fn−1] = F ′(wn−1).

Besides, we have

E
[∥∥f ′(wn−1)− f ′(y) + ΓF ′(y)

∥∥2 |Fn−1
]

≤ 2E
[∥∥f ′(wn−1)− f ′(w∗)

∥∥2 +
∥∥f ′(y)− f ′(w∗) + ΓF ′(y)

∥∥2 |Fn−1
]
.
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We reuse the same proof as in [Mania et al., 2015, Lemma 10]. Using the fact that
E
[
(f ′(y)− f ′(w∗))TΓF ′(y)|Fn−1

]
= ‖F ′(y)‖2diag(p)−1 and E

[
‖ΓF ′(y)‖2 |Fn−1

]
= ‖F ′(y)‖2diag(p)−1

we have

E
[
A(k)|Fn−1

]
= E

[∥∥f ′(y)− f ′(w∗)
∥∥2 |Fn−1

]
− 2

∥∥F ′(y)
∥∥2

diag(p)−1 +
∥∥F ′(y)

∥∥2
diag(p)−1

≤ E
[∥∥f ′(y)− f ′(w∗)

∥∥2 |Fn−1
]
.

It follows that

E
[
‖gn‖2 |Fn−1

]
= 1
B
E
[∥∥f ′(wn−1)− f ′(y) + ΓF ′(y)

∥∥2 |Fn−1
]

+
∥∥F ′(wt−1)

∥∥2
(

1− 1
B

)
≤ 2
B

(
E
[∥∥f ′(wn−1)− f ′(w∗)

∥∥2 +
∥∥f ′(y)− f ′(w∗)

∥∥2 |Fn−1
])

+
∥∥F ′(wt−1)

∥∥2
(

1− 1
B

)
≤ 4L

B
(F (wn−1)− F∗ + F (y)− F∗) +

∥∥F ′(wt−1)
∥∥2
(

1− 1
B

)
,

using Lemma 6.4 from Bubeck et al. [2015]. We also have∥∥F ′(wt−1)
∥∥2 ≤ LF ′(wn−1)T (wn−1 − w∗),

so that

E
[
‖wn − w∗‖2 |Fn−1

]
≤‖wn−1 − w∗‖2 − 2γ

(
1− γL

2

(
1− 1

B

))
F ′(wn−1)T (wn−1 − w∗)

+ 4γ2L

B
(F (wn−1)− F∗ + F (y)− F∗).

We choose γ so that

γL

(
1− 1

B

)
< 1,

and using that F ′(wn−1)T (wn−1 − w∗) ≥ F (wn−1)− F∗ we have

E
[
‖wn − w∗‖2 |Fn−1

]
≤‖wn−1 − w∗‖2 − γ

(
2− γL(3 +B)

B

)
(F (wn−1)− F∗) + 4γ2L

B
(F (y)− F∗) .

Summing the above inequality for n ∈ [m] and taking the expectation with respect to
F0,

E
[
‖wm − w∗‖2

]
≤ ‖y − w∗‖ − γ

(
2− γL(3 +B)

B

)
E

 ∑
n∈[m]

F (wn)− F∗|F0

+ 4Lγ2m

B
(F (y)− F∗).

Using the strong convexity of F we have ‖w0 − w∗‖2 ≤ 2
µ (F (y)− F∗) and finally

E

F
 1
m

∑
n∈[m]

wn

− F∗|F0

 ≤
 1
µγ
(
1− γL(3+B)

2B

)
m

+ 2Lγ
B
(
1− γL (3+B)

2B

)
 (F (y)− F (w∗)).
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One can derive a simplified convergence result when we assume B large enough.

Corollary 1. If we assume B � 1, then with γ = 1
L and m = 2BL

µ(0.9B−4) ≈
2.2L
µ , we have

E [F (ys)− F∗] ≤ 0.9s(F (y0)− F∗).

B.4.2. AdaBatch SVRG

Let us now assume that F verify the following inequalities for µ > 0,

∀w ∈ Rd, µdiag (p) � F ′′(w) and f(w) � Ldiag (p) a.s. (B.38)

We now define for any dimension k such that D(k)
s,n 6= ∅,

g(k)
s,n := 1∣∣∣D(k)

s,n

∣∣∣
 ∑
b∈D(k)

s,n

f ′s,n,b(ws,n−1)(k) − f ′s,n,b(ys)(k) + F ′(ys)(k)/p(k)

 ,
and g(k)

s,n := 0 otherwise.

Theorem 8 (Convergence of SVRG with AdaBatch). If Assumptions B.38 are verified
and γ verifies

γ <
L

2 ,

then for all s > 0 we have

E [F (ys)− F∗] ≤ αs(F (y0)− F∗), (B.39)

where
α := 1

µ(1− (1− pmin)B)γ (1− 2γL)m + 2Lγ
1− 2γL. (B.40)

Proof. We reuse the same proof technique as previously and introduce the same operators
Γ and Γn,b, again dropping all s indices for simplicity.

We introduce C := Diag
(

1−(1−p)B

p

)
and using Lemma B.1 we have

E
[
‖gn‖2C−1 |Fn−1

]
≤ E

[∥∥f ′(wn−1)− f ′(y) + ΓF ′(y)
∥∥2 |Fn−1

]
≤ 4L(F (wn−1)− F∗ + F (y)− F∗),

using similar arguments as for regular mini-batch. Therefore, we have

E
[
‖wn − w∗‖2C−1 |Fn−1

]
≤‖wn−1 − w∗‖2C−1 − 2γF ′(wn−1)T (wn−1 − w∗)

+ 4γ2L(F (wn−1)− F∗ + F (y)− F∗)
≤‖wn−1 − w∗‖2C−1 − 2γ (1− 2γL) (F (wn−1)− F∗) + 4γ2L (F (y)− F∗) .
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Summing the above inequality for n ∈ [m] and taking the expectation with respect to
F0,

E
[
‖wm − w∗‖2C−1

]
≤ ‖y − w∗‖C−1 − 2γ (1− 2γL)E

 ∑
n∈[m]

F (wn)− F∗|F0

+ 4Lγ2m(F (y)− F∗).

Using the strong convexity of F we have

‖w0 − w∗‖C−1 ≤
1

1− (1− pmin)B ‖w0 − w∗‖2diag(p)

≤ 2
µ(1− (1− pmin)B) (F (y)− F∗) ,

and finally

E

F
 1
m

∑
n∈[m]

wn

− F∗|F0

 ≤ ( 1
µ(1− (1− pmin)B)γ (1− 2γL)m + 2Lγ

1− 2γL

)
(F (y)− F (w∗)).

One can derive a simplified convergence result when we assume pmin small enough.

Corollary 2. If we assume pmin � 1 so that (1 − (1 − pmin)B) ≈ Bpmin then with
γ = 1

10L and m = 20L
Bpminµ

, we have

E [F (ys)− F∗] ≤ 0.9s(F (y0)− F∗).

B.4.3. Comparing the effect of regular mini-batch and AdaBatch for SVRG

If F verifies our sparse convexity condition

∀w ∈ Rd, µdiag (p) � F ′′(w) � Ldiag (p) , (B.41)

we can apply Theorem 7 for

∀w ∈ Rd, µpmin � F ′′(w) � L, (B.42)

We will assume that the batch size B is large enough (for instance B = 50), pmin

is small enough so that 1 − (1 − pmin)B ≈ Bpmin. Then using corollary 1, in order to
achieve a linear convergence rate of 0.9 for regular mini-batch we would need to have a
number of inner iterations given by

mmb ≈
2.2L
pminµ

.
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This number is roughly constant with the batch size. However the cost of each single
iteration is now B times larger, thus meaning that we would need to process B times
more samples before reaching the same accuracy as when B = 1.
On the other hand, using Corollary 2, in order to achieve the same rate of convergence,

we would require the number of inner iterations to be

mab ≈
20L

Bpminµ
,

thus the number of inner iterations is inversely proportionnal to the batch size, which
balances perfectly the increased cost of each iteration. We will reach the same accuracy
as for B = 1 without requiring to process more samples.

It should be noted that using Lemma B.2, it is possible to show that AdaBatch also
benefits from variance reduction for the coordinates where p(k)B is large enough. This
will depend on the datasets but we have observed such an effect in practice, which allows
us to take a larger step-size and further improve convergence.
As for regular SGD, we have noticed experimentally that mini-batch SVRG will be-

come more efficient than AdaBatch when we are close to the optimum. For instance,
on datasets that are much smaller than url such as news20 or spam, we observed that
mini-batch SVRG will perform better than AdaBatch. Therefore, we would advice using
AdaBatch for early optimization and regular mini-batch for fine tuning when close to
the optimum.

B.5. Experimental results

B.5.1. Experimental results for AdaBatch Wild

We present here the same graphs as in Chapter 4 but for the spam and url dataset. We
also provide the convergence with respect to the number of samples for news20. On both
datasets, AdaBatch performs competitively with Hogwild! and significantly better than
mini-batch SGD, especially when increasing the number of workers and batch-size.
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Figure B.1.: Convergence result for news20. The error is given either as a function of
the wall-clock time (left) or of the number of samples processed (right).

10−2 10−1

10−2

10−1.5

time (in sec)

F
n
−
F
∗

AB W = 2
AB W = 6
MB W = 2
MB W = 6
SEQ W = 1
HW W = 2
HW W = 6

104 105

10−2

10−1.5

samples

F
n
−
F
∗

Figure B.2.: Convergence result for spam. The error is given either as a function of the
wall-clock time (left) or of the number of samples processed (right).
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Figure B.3.: On the left, time to achieve a given test error when varying the number of
workers for the spam dataset. The dashed line represents an ideal speedup
dividing the time for 1 worker by W . On the right, number of process
sampled per second as a function of W for the spam dataset.
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Figure B.4.: Convergence result for url. The error is given either as a function of the
wall-clock time (left) or of the number of samples processed (right).
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Figure B.5.: On the left, time to achieve a given test error when varying the number
of workers on url. The dashed line represents an ideal speedup dividing
the time for 1 worker by W . On the right, number of process sampled per
second as a function of W on url.
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B.5.2. Experimental results for SVRG

We give a comparison of regular mini-batch and AdaBatch on news20 and spam on
figure B.6. The difference is less marked than on the url dataset which we believe
is due to the relative simplicity of the optimization problem on such datasets. The
L2 regularization was chosen in order to achieve relatively good validation error while
retaining the good convergence of SVRG in the strongly convex case.
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Figure B.6.: Comparison of regular mini-batch vs AdaBatch with SVRG on news20 and
spam dataset.
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C. Convergence of adaptive methods with
heavy-ball momentum

C.1. Setup and notations

We recall the dynamic system introduced in Section 5.2.3. In the rest of this section, we
take an iteration n ∈ N∗, and when needed, i ∈ [d] refers to a specific coordinate. Given
x0 ∈ Rd our starting point, m0 = 0, and v0 = 0, we define

mn,i = β1mn−1,i +∇ifn(xn−1),

vn,i = β2vn−1,i + (∇ifn(xn−1))2 ,

xn,i = xn−1,i − αn mn,i√
ε+vn,i

.

(C.1)

For Adam, the step size is given by

αn = α(1− β1)

√√√√n−1∑
j=0

βj2. (C.2)

For Adagrad (potentially extended with heavy-ball momentum), we have β2 = 1 and

αn = α(1− β1). (C.3)

Notice we include the factor 1 − β1 in the step size rather than in (C.1), as this allows
for a more elegant proof. The original Adam algorithm included compensation factors
for both β1 and β2 [Kingma and Ba, 2014] to correct the initial scale of m and v which
are initialized at 0. Adam would be exactly recovered by replacing (C.2) with

αn = α

√∑n−1
j=0 β

j
2∑n−1

j=0 β
j
1
. (C.4)

However, the denominator ∑n−1
j=0 β

j
1 potentially makes (αn)n∈N∗ non monotonic, which

complicates the proof. Thus, we instead replace the denominator by its limit value for
n → ∞. This has little practical impact as (i) early iterates are noisy because v is
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averaged over a small number of gradients, so making smaller step can be more stable,
(ii) for β1 = 0.9 [Kingma and Ba, 2014], (C.2) differs from (C.4) only for the first few
tens of iterations. We could have replaced the numerator by its limit value but chose
not to as: (i) β2 is typically much closer to 1 than β1, thus our update rule would have
differed from Adam for longer (ii) without this correction, the step size is either too large
early on or too small at the end.
Throughout the proof we note En−1 [·] the conditional expectation with respect to

f1, . . . , fn−1. In particular, xn−1, vn−1 is deterministic knowing f1, . . . , fn−1. We intro-
duce

Gn = ∇F (xn−1) and gn = ∇fn(xn−1). (C.5)

Like in Section 5.6.2, we introduce the update un ∈ Rd, as well as the update without
heavy-ball momentum Un ∈ Rd:

un,i = mn,i√
ε+ vn,i

and Un,i = gn,i√
ε+ vn,i

. (C.6)

For any k ∈ N with k < n, we define ṽn,k ∈ Rd by

ṽn,k,i = βk2vn−k,i + En−k−1

 n∑
j=n−k+1

βn−j2 g2
j,i

 , (C.7)

i.e. the contribution from the k last gradients are replaced by their expected value for
know values of f1, . . . , fn−k−1. For k = 1, we recover the same definition as in (5.26).

C.2. Results

For any total number of iterations N ∈ N∗, we define τN a random index with value in
{0, . . . , N − 1}, verifying

∀j ∈ N, j < N,P [τ = j] ∝ 1− βN−j1 . (C.8)

If β1 = 0, this is equivalent to sampling τ uniformly in {0, . . . , N − 1}. If β1 > 0, the
last few 1

1−β1
iterations are sampled rarely, and all iterations older than a few times

that number are sampled almost uniformly. We bound the expected squared norm of
the total gradient at iteration τ , which is standard for non convex stochastic optimiza-
tion [Ghadimi and Lan, 2013].
Note that like in previous works, the bound worsen as β1 increases, with a dependency

in (1−β1) which is (1−β1)−1. This is a significant improvement over the existing bound
for Adagrad with heavy-ball momentum, which scale as (1 − β1)−3 [Zou et al., 2019b],
or the best known bound for Adam which scale as (1− β1)−5 [Zou et al., 2019a].
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Technical lemmas to prove the following theorems are introduced in Section C.4, while
the proof of Theorems 9 and 10 are provided in Section C.5.

Theorem 9 (Convergence of Adam with momentum). Given the hypothesis introduced
in Section 5.2.3, the iterates xn defined in Section 5.2.2 with hyper-parameters verifying
0 < β2 < 1, αn = α(1 − β1)

√∑n−1
j=0 β

j
2 with α > 0 and 0 < β1 < β2, we have for any

N ∈ N∗ such that N > β1
1−β1

, taking τ defined by (C.8),

E
[
‖∇F (xτ )‖2

]
≤ 2RF (x0)− F∗

αÑ
+ E

Ñ

(
ln
(

1 + R2

ε(1− β2)

)
−N ln(β2)

)
, (C.9)

with

Ñ = N − β1
1− β1

, (C.10)

and

E = αdRL(1− β1)
(1− β1/β2)(1− β2) + 12dR2√1− β1

(1− β1/β2)3/2√1− β2
+ 2α2dL2β1

(1− β1/β2)(1− β2)3/2 . (C.11)

Theorem 10 (Convergence of Adagrad with momentum). Given the hypothesis intro-
duced in Section 5.2.3, the iterates xn defined in Section 5.2.2 with hyper-parameters
verifying β2 = 1, αn = (1 − β1)α with α > 0 and 0 < β1 < 1, we have for any N ∈ N∗

such that N > β1
1−β1

, taking τ as defined by (C.8),

E
[
‖∇F (xτ )‖2

]
≤ 2R

√
N
F (x0)− F∗

αÑ
+
√
N

Ñ

(
αdRL+ 12dR2

1− β1
+ 2α2dL2β1

1− β1

)
ln
(

1 + NR2

ε

)
,

(C.12)

with

Ñ = N − β1
1− β1

. (C.13)

C.3. Analysis of the results with momentum

First notice that taking β1 → 0 in Theorems 9 and 10, we almost recover the same result
as stated in 1 and 2, only losing on the term 4dR2 which becomes 12dR2.

Simplified expressions with momentum Assuming N � β1
1−β1

and β1/β2 ≈ β1, which
is verified for typical values of β1 and β2 [Kingma and Ba, 2014], it is possible to simplify
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the bound for Adam (C.9) as

E
[
‖∇F (xτ )‖2

]
/ 2RF (x0)− F∗

αN

+
(
αdRL

1− β2
+ 12dR2

(1− β1)
√

1− β2
+ 2α2dL2β1

(1− β1)(1− β2)3/2

)(
1
N

ln
(

1 + R2

ε(1− β2)

)
− ln(β2)

)
.

(C.14)

Similarly, if we assume N � β1
1−β1

, we can simplify the bound for Adagrad (C.12) as

E
[
‖∇F (xτ )‖2

]
/ 2RF (x0)− F∗

α
√
N

+ 1√
N

(
αdRL+ 12dR2

1− β1
+ 2α2dL2β1

1− β1

)
ln
(

1 + NR2

ε

)
,

(C.15)

Optimal finite horizon Adam is still Adagrad We can perform the same finite horizon
analysis as in Section 5.5.3. If we take α = α̃√

N
and β2 = 1−1/N , then (C.14) simplifies

to

E
[
‖∇F (xτ )‖2

]
/ 2RF (x0)− F∗

α̃
√
N

+ 1√
N

(
α̃dRL+ 12dR2

1− β1
+ 2α̃2dL2β1

1− β1

)(
ln
(

1 + NR2

ε

)
+ 1

)
. (C.16)

The term (1 − β2)3/2 in the denominator in (C.14) is indeed compensated by the α2

in the numerator and we again recover the proper ln(N)/
√
N convergence rate, which

matches (C.15) up to a +1 term next to the log.

C.4. Technical lemmas

We first need an updated version of 5.1 that includes momentum.

Lemma C.1 (Adaptive update with momentum approximately follows a descent direc-
tion). Given x0 ∈ Rd, the iterates defined by the system (C.1) for (αj)j∈N∗ that is non-
decreasing, and under the conditions (5.5), (5.7), and (5.8), as well as 0 ≤ β1 < β2 ≤ 1,
we have for all iterations n ∈ N∗,

E

∑
i∈[d]

Gn,i
mn,i√
ε+ vn,i

 ≥ 1
2

∑
i∈[d]

n−1∑
k=0

βk1E
[

G2
n−k,i√

ε+ ṽn,k+1,i

]
− α2

nL
2

4R
√

1− β1

(
n−1∑
l=0
‖un−l‖22

n−1∑
k=l

βl1
√
l

)
− 3R√

1− β1

(
n−1∑
k=0

(
β1
β2

)k√
k + 1 ‖Un−k‖22

)
.

(C.17)
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Proof. We use multiple times (5.30) in this proof, which we repeat here for convenience,

∀λ > 0, x, y ∈ R, xy ≤ λ

2x
2 + y2

2λ. (C.18)

Let us take an iteration n ∈ N∗ for the duration of the proof. We have

∑
i∈[d]

Gn,i
mn,i√
ε+ vn,i

=
∑
i∈[d]

n−1∑
k=0

βk1Gn,i
gn−k,i√
ε+ vn,i

=
∑
i∈[d]

n−1∑
k=0

βk1Gn−k,i
gn−k,i√
ε+ vn,i︸ ︷︷ ︸

A

+
∑
i∈[d]

n−1∑
k=0

βk1 (Gn,i −Gn−k,i)
gn−k,i√
ε+ vn,i︸ ︷︷ ︸

B

,

(C.19)

Let us now take an index 0 ≤ k ≤ n − 1. We show that the contribution of past
gradients Gn−k and gn−k due to the heavy-ball momentum can be controlled thanks to
the decay term βk1 . Let us first have a look at B. Using (C.18) with

λ =
√

1− β1

2R
√
k + 1

, x = |Gn,i −Gn−k,i| , y = |gn−k,i|√
ε+ vn,i

,

we have

|B| ≤
∑
i∈[d]

n−1∑
k=0

βk1

( √
1− β1

4R
√
k + 1

(Gn,i −Gn−k,i)2 + R√
1− β1

√
k + 1

g2
n−k,i

ε+ vn,i

)
. (C.20)

Notice first that for any dimension i ∈ [d], ε + vn,i ≥ ε + βk2vn−k,i ≥ βk2 (ε + vn−k,i), so
that

g2
n−k,i

ε+ vn,i
≤ 1
βk2
U2
n−k,i (C.21)

Besides, using the L-smoothness of F given by (5.8), we have

‖Gn −Gn−k‖22 ≤ L
2 ‖xn−1 − xn−k−1‖22

= L2
∥∥∥∥∥
k∑
l=1

αn−lun−l

∥∥∥∥∥
2

2

(C.22)

≤ α2
nL

2k
k∑
l=1
‖un−l‖22 , (C.23)

using Jensen inequality and the fact that αn is non-decreasing. Injecting (C.21) and
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(C.23) into (C.20), we obtain

|B| ≤
(
n−1∑
k=0

α2
nL

2

4R
√

1− β1β
k
1
√
k

k∑
l=1
‖un−l‖22

)
+
(
n−1∑
k=0

R√
1− β1

(
β1
β2

)k√
k + 1 ‖Un−k‖22

)

= α2
nL

2

4R
√

1− β1

(
n−1∑
l=0
‖un−l‖22

n−1∑
k=l

βl1
√
l

)
+ R√

1− β1

(
n−1∑
k=0

(
β1
β2

)k√
k + 1 ‖Un−k‖22

)
.

(C.24)

Now going back to the A term in (C.19), we will study the main term of the summation,
i.e. for i ∈ [d] and k < n

E
[
Gn−k,i

gn−k,i
vn,i

]
= E

[
∇iF (xn−k−1)∇ifn−k(xn−k−1)

√
ε+ vn,i

]
. (C.25)

Notice that we could almost apply Lemma 5.1 to it, except that we have vn,i in the
denominator instead of vn−k,i. Thus we will need to extend the proof to decorrelate
more terms. We will further drop indices in the rest of the proof, noting G = Gn−k,i,
g = gn−k,i, ṽ = ṽn,k+1,i and v = vn,i. Finally, let us note

δ2 =
n∑

j=n−k
βn−j2 gj,i and r2 = En−k−1

[
δ2
]
. (C.26)

In particular we have ṽ− v = r2− δ2. With our new notations, we can rewrite (C.25) as

E
[
G

g√
ε+ v

]
= E

[
G

g√
ε+ ṽ

+Gg

( 1√
ε+ v

− 1√
ε+ ṽ

)]
= E

[
En−k−1

[
G

g√
ε+ ṽ

]
+Gg

r2 − δ2
√
ε+ v

√
ε+ ṽ(

√
ε+ v +

√
ε+ ṽ)

]

= E
[

G2
√
ε+ ṽ

]
+ E

Gg r2 − δ2
√
ε+ v

√
ε+ ṽ(

√
ε+ v +

√
ε+ ṽ)︸ ︷︷ ︸

C

 . (C.27)

We first focus on C:

|C| ≤ |Gg| r2
√
ε+ v(ε+ ṽ)︸ ︷︷ ︸
κ

+ |Gg| δ2

(ε+ v)
√
ε+ ṽ︸ ︷︷ ︸

ρ

,

due to the fact that
√
ε+ v +

√
ε+ ṽ ≥ max(

√
ε+ v,

√
ε+ ṽ) and

∣∣r2 − δ2∣∣ ≤ r2 + g2.
Applying (C.18) to κ with

λ =
√

1− β1
√
ε+ ṽ

2 , x = |G|√
ε+ ṽ

, y = |g| r2
√
ε+ ṽ

√
ε+ v

,
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we obtain

κ ≤ G2

4
√
ε+ ṽ

+ 1√
1− β1

g2r4

(ε+ ṽ)3/2(ε+ v)
.

Given that ε+ ṽ ≥ r2 and taking the conditional expectation, we can simplify as

En−k−1 [κ] ≤ G2

4
√
ε+ ṽ

+ 1√
1− β1

r2
√
ε+ ṽ

En−k−1

[
g2

ε+ v

]
. (C.28)

Now turning to ρ, we use (C.18) with

λ =
√

1− β1
√
ε+ ṽ

2r2 , x = |Gδ|√
ε+ ṽ

, y = |δg|
ε+ v

,

we obtain

ρ ≤ G2

4
√
ε+ ṽ

δ2

r2 + 1√
1− β1

r2
√
ε+ ṽ

g2δ2

(ε+ v)2 . (C.29)

Given that ε + v ≥ δ2, and En−k−1
[
δ2

r2

]
= 1, we obtain after taking the conditional

expectation,

En−k−1 [ρ] ≤ G2

4
√
ε+ ṽ

+ 1√
1− β1

r2
√
ε+ ṽ

En−k−1

[
g2

ε+ v

]
. (C.30)

Notice that in C.29, we possibly divide by zero. It suffice to notice that if r2 = 0 then
δ2 = 0 a.s. so that ρ = 0 and (C.30) is still verified. Summing (C.28) and (C.30), we get

En−k−1 [|C|] ≤ G2

2
√
ε+ ṽ

+ 2√
1− β1

r2
√
ε+ ṽ

En−k−1

[
g2

ε+ v

]
. (C.31)

Given that r ≤
√
ε+ ṽ by definition of ṽ, and that using (5.7), r ≤

√
k + 1R, we have,

reintroducing the indices we had dropped

En−k−1 [|C|] ≤
G2
n−k,i

2
√
ε+ ṽn,k,i

+ 2R√
1− β1

√
k + 1En−k−1

[
g2
n−k,i

ε+ vn,i

]
. (C.32)

Taking the complete expectation and using that by definition ε+ vn,i ≥ ε+ βk2vn−k,i ≥
βk2 (ε+ vn−k,i) we get

E [|C|] ≤ 1
2E
[

G2
n−k,i√

ε+ ṽn,k,i

]
+ 2R√

1− β1βk2

√
k + 1E

[
g2
n−k,i

ε+ vn−k,i

]
. (C.33)
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Injecting (C.33) into (C.27) gives us

E [A] ≥
∑
i∈[d]

n−1∑
k=0

βk1

(
E
[

G2
n−k,i√

ε+ ṽn,k,i

]
−
(

1
2E
[

G2
n−k,i√

ε+ ṽn,k,i

]
+ 2R√

1− β1βk2

√
k + 1E

[
g2
n−k,i

ε+ vn−k,i

]))

= 1
2

∑
i∈[d]

n−1∑
k=0

βk1E
[

G2
n−k,i√

ε+ ṽn,k,i

]− 2R√
1− β1

∑
i∈[d]

n−1∑
k=0

(
β1
β2

)k√
k + 1E

[
‖Un−k‖22

] .
(C.34)

Injecting (C.34) and (C.24) into (C.19) finishes the proof.

Similarly, we will need an updated version of 5.2.

Lemma C.2 (sum of ratios of the square of a decayed sum and a decayed sum of
square). We assume we have 0 < β2 ≤ 1 and 0 < β1 < β2, and a sequence of real
numbers (an)n∈N∗. We define bn = ∑n

j=1 β
n−j
2 a2

j and cn = ∑n
j=1 β

n−j
1 aj. Then we have

n∑
j=1

c2
j

ε+ bj
≤ 1

(1− β1)(1− β1/β2)

(
ln
(

1 + bn
ε

)
− n ln(β2)

)
. (C.35)

Proof. Now let us take j ∈ N∗, j ≤ n, we have using Jensen inequality

c2
j ≤

1
1− β1

j∑
l=1

βj−l1 a2
l ,

so that

c2
j

ε+ bj
≤ 1

1− β1

j∑
l=1

βj−l1
a2
l

ε+ bj
.

Given that for l ∈ [j], we have by definition ε+ bj ≥ ε+ βj−l2 bl ≥ βj−l2 (ε+ bj), we get

c2
j

ε+ bj
≤ 1

1− β1

j∑
l=1

(
β1
β2

)j−l a2
l

ε+ bl
. (C.36)

Thus, when summing over all j ∈ [n], we get
n∑
j=1

c2
j

ε+ bj
≤ 1

1− β1

n∑
j=1

j∑
l=1

(
β1
β2

)j−l a2
l

ε+ bl

= 1
1− β1

n∑
l=1

a2
l

ε+ bl

n∑
j=l

(
β1
β2

)j−l

≤ 1
(1− β1)(1− β1/β2)

n∑
l=1

a2
l

ε+ bl
. (C.37)
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Applying Lemma 5.2, we obtain (C.35).

We also need two technical lemmas on the sum of series.

Lemma C.3 (sum of a geometric term times a square root). Given 0 < a < 1 and
Q ∈ N, we have,

Q−1∑
q=0

aq
√
q + 1 ≤ 1

1− a

(
1 +

√
π

2
√
− ln(a)

)
≤ 2

(1− a)3/2 . (C.38)

Proof. We first need to study the following integral:∫ ∞
0

ax

2
√
x

dx =
∫ ∞

0

eln(a)x

2
√
x

dx , then introducing y =
√
x,

=
∫ ∞

0
eln(a)y2dy , then introducing u =

√
−2 ln(a)y,

= 1√
−2 ln(a)

∫ ∞
0

e−u2/2du∫ ∞
0

ax

2
√
x

dx =
√
π

2
√
− ln(a)

, (C.39)

where we used the classical integral of the standard Gaussian density function.
Let us now introduce AQ:

AQ =
Q−1∑
q=0

aq
√
q + 1,

then we have

AQ − aAQ =
Q−1∑
q=0

aq
√
q + 1−

Q∑
q=1

aq
√
q , then using the concavity of

√
·,

≤ 1− aQ
√
Q+

Q−1∑
q=1

aq

2√q

≤ 1 +
∫ ∞

0

ax

2
√
x

dx

(1− a)AQ ≤ 1 +
√
π

2
√
− ln(a)

,

where we used (C.39). Given that
√
− ln(a) ≥

√
1− a we obtain (C.38).

Lemma C.4 (sum of a geometric term times roughly a power 3/2). Given 0 < a < 1
and Q ∈ N, we have,

Q−1∑
q=0

aq
√
q(q + 1) ≤ 4a

(1− a)5/2 . (C.40)
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Proof. Let us introduce AQ:

AQ =
Q−1∑
q=0

aq
√
q(q + 1),

then we have

AQ − aAQ =
Q−1∑
q=0

aq
√
q(q + 1)−

Q∑
q=1

aq
√
q − 1q

≤
Q−1∑
q=1

aq
√
q
(
(q + 1)−√q

√
q − 1

)

≤
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aq
√
q ((q + 1)− (q − 1))

≤ 2
Q−1∑
q=1

aq
√
q

= 2a
Q−2∑
q=0

aq
√
q + 1 , then using Lemma C.3,

(1− a)AQ ≤
4a

(1− a)3/2 .

C.5. Proof of Adam and Adagrad with momentum

Common part of the proof Let us a take an iteration n ∈ N∗. Using the smoothness
of F defined in (5.8), we have

F (xn) ≤ F (xn−1)− αnGTnun + α2
nL

2 ‖un‖22 .

Taking the full expectation and using Lemma C.1,

E [F (xn)] ≤ E [F (xn−1)]− αn
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)
.

(C.41)
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Notice that because of the bound on the `∞ norm of the stochastic gradients at the
iterates (5.7), we have for any k ∈ N, k < n, and any coordinate i ∈ [d],

√
ε+ ṽn,k,i ≤

R
√∑n−1

j=0 β
j
2. Introducing Ωn =

√∑n−1
j=0 β

j
2, we have
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)k√
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)
.

(C.42)

Now summing over all iterations n ∈ [N ] for N ∈ N∗, and using that for both Adam
(C.2) and Adagrad (C.3), αn is non-decreasing, as well the fact that F is bounded below
by F∗ from (5.5), we get

1
2R

N∑
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αn
Ωn

n−1∑
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βk1E
[
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︸ ︷︷ ︸

D

. (C.43)

First looking at B, we have using Lemma C.2,

B ≤ α2
NL

2(1− β1)(1− β1/β2)
∑
i∈[d]

(
ln
(

1 + vN,i
ε

)
−N log(β2)

)
. (C.44)
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Then looking at C and introducing the change of index j = n− k,

C = α3
NL
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] β1
(1− β1)2 , (C.45)

using Lemma C.4. Finally, using Lemma C.2, we get

C ≤ α3
NdL

2β1
R(1− β1)3(1− β1/β2)

∑
i∈[d]

(
ln
(

1 + vN,i
ε

)
−N log(β2)

)
. (C.46)

Finally, introducing the same change of index j = n− k for D, we get

D = 3αNR√
1− β1

N∑
n=1

n∑
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1 + n− jE
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≤ 3αNR√
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j=1

E
[
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] 1
(1− β1/β2)3/2 , (C.47)

using Lemma C.3. Finally, using Lemma 5.2 or equivalently Lemma C.2 with β1 = 0,
we get

D ≤ 6αNdR√
1− β1(1− β1/β2)3/2

∑
i∈[d]

(
ln
(

1 + vN,i
ε

)
−N ln(β2)

)
. (C.48)

This is as far as we can get without having to use the specific form of αN given by
either (C.2) for Adam or (C.3) for Adagrad. We will now split the proof for either
algorithm.
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Adam For Adam, using (C.2), we have αn = (1 − β1)Ωnα. Thus, we can simplify the
A term from (C.43), also using the usual change of index j = n− k, to get

A = 1
2R

N∑
n=1

αn
Ωn

n∑
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βn−j1 E
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]
. (C.49)

If we now introduce τ as in (C.8), we can first notice that

N−1∑
j=0

(1− βN−j1 ) = N − β1
1− βN1
1− β1

≥ N − β1
1− β1

. (C.50)

Introducing

Ñ = N − β1
1− β1

, (C.51)

we then have

A ≥ αÑ

2R E
[
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]
. (C.52)

Further notice that for any coordinate i ∈ [d], we have vN,i ≤ R2

1−β2
, besides αN ≤

α 1−β1√
1−β2

, so that putting together (C.43), (C.52), (C.44), (C.46) and (C.48) we get

E
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, (C.53)

with

E = αdRL(1− β1)
(1− β1/β2)(1− β2) + 2α2dL2β1

(1− β1/β2)(1− β2)3/2 + 12dR2√1− β1
(1− β1/β2)3/2√1− β2

. (C.54)

This conclude the proof of theorem 9.

169



Adagrad For Adagrad, we have αn = (1− β1)α, β2 = 1 and Ωn ≤
√
N so that,
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(C.55)

= α

2R
√
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N−1∑
j=0

(1− βN−j1 )E
[
‖∇F (xj)‖22

]
. (C.56)

Reusing (C.50) and (C.51) from the Adam proof, and introducing τ as in (5.12), we
immediately have

A ≥ αÑ

2R
√
N

E
[
‖∇F (xτ )‖22

]
. (C.57)

Further notice that for any coordinate i ∈ [d], we have vN ≤ NR2, besides αN =
(1−β1)α, so that putting together (C.43), (C.57), (C.44), (C.46) and (C.48) with β2 = 1,
we get

E
[
‖∇F (xτ )‖22

]
≤ 2R

√
N
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+ E

Ñ
ln
(

1 + NR2

ε

)
, (C.58)

with
E = αdRL+ 2α2dL2β1

1− β1
+ 12dR2

1− β1
. (C.59)

This conclude the proof of theorem 10.
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MOTS CLÉS

Apprentissage machine, optimisation, intelligence artificielle, synthèse audio, séparation de sources.

RÉSUMÉ

Les récents progrès en apprentissage profond permettent désormais l’analyse détaillée de données audio ainsi que

leur génération. Les applications sont multiples : transcription automatique de morceaux de musique, séparation de

source, synthèse vocale avec différentes identités du locuteur, synthèse de nouveaux instruments etc. Pour cette thèse,

l’objectif est de trouver une architecture simple, rapide et précise capable de résoudre des tâches comme la modélisation

d’instruments de musique, ou la séparation de source. L’entraînement de tels modèles implique l’utilisation de technique

d’optimisation stochastique dont nous chercherons également à couvrir les aspects théoriques.

ABSTRACT

Thanks to recent progress in deep learning, we are now able to analyse and generate complex audio data. Many new

applications are possible: automatic transcription of music tracks, source separation, speech synthesis with different

speakers, synthesis of new instruments etc. In this thesis, we aim at developing a simple architecture, that is both fast

and accurate, able to solve different audio tasks such as the modelisation of musical instruments or source separation.

The training of such models requires the use of stochastique optimizatoin techniques, of which we will cover the relevent

theoretical aspects.

KEYWORDS

Machine learning, optimization, artificial intelligence, audio synthesis, source separation.
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